std::ranges::fold_left_with_iter, std::ranges::fold_left_with_iter_result

From cppreference.com
< cpp‎ | algorithm‎ | ranges
 
 
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Execution policies (C++17)
Non-modifying sequence operations
(C++11)(C++11)(C++11)
(C++17)
Modifying sequence operations
Partitioning operations
Sorting operations
(C++11)
Binary search operations
Set operations (on sorted ranges)
Heap operations
(C++11)
Minimum/maximum operations
(C++11)
(C++17)

Permutations
Numeric operations
Operations on uninitialized storage
(C++17)
(C++17)
(C++17)
C library
 
Constrained algorithms
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutations
Numeric operations
Fold operations
ranges::fold_left_with_iter
(C++23)
Operations on uninitialized storage
Return types
 
Defined in header <algorithm>
Call signature
template< std::input_iterator I, std::sentinel_for<I> S, class T,

          __indirectly_binary_left_foldable<T, I> F >
constexpr /* see description */

    fold_left_with_iter( I first, S last, T init, F f );
(1) (since C++23)
template< ranges::input_range R, class T,

          __indirectly_binary_left_foldable<T, ranges::iterator_t<R>> F >
constexpr /* see description */

    fold_left_with_iter( R&& r, T init, F f );
(2) (since C++23)
Helper concepts
template< class F, class T, class I >
concept __indirectly_binary_left_foldable = /* see description */;
(3) (exposition only*)
Helper class template
template< class I, class T >
using fold_left_with_iter_result = ranges::in_value_result<I, T>;
(4) (since C++23)

Left-folds the elements of given range, that is, returns the result of evaluation of the chain expression:
f(f(f(f(init, x1), x2), ...), xn), where x1, x2, ..., xn are elements of the range.

Informally, ranges::fold_left_with_iter behaves like std::accumulate's overload that accepts a binary predicate.

The behavior is undefined if [firstlast) is not a valid range.

1) The range is [firstlast).
2) Same as (1), except that uses r as the range, as if by using ranges::begin(r) as first and ranges::end(r) as last.
3) Equivalent to:
Helper concepts
template< class F, class T, class I, class U >

concept /*indirectly-binary-left-foldable-impl*/ =
  std::movable<T> &&
  std::movable<U> &&
  std::convertible_to<T, U> &&
  std::invocable<F&, U, std::iter_reference_t<I>> &&
  std::assignable_from<U&,

    std::invoke_result_t<F&, U, std::iter_reference_t<I>>>;
(3A) (exposition only*)
template< class F, class T, class I >

concept /*indirectly-binary-left-foldable*/ =
  std::copy_constructible<F> &&
  std::indirectly_readable<I> &&
  std::invocable<F&, T, std::iter_reference_t<I>> &&
  std::convertible_to<std::invoke_result_t<F&, T, std::iter_reference_t<I>>,
    std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>> &&
    /*indirectly-binary-left-foldable-impl*/<F, T, I,

      std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>>;
(3B) (exposition only*)
4) The return type alias. See Return value section for details.

The function-like entities described on this page are niebloids, that is:

In practice, they may be implemented as function objects, or with special compiler extensions.

Parameters

first, last - the range of elements to fold
r - the range of elements to fold
init - the initial value of the fold
f - the binary function object

Return value

Let U be std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>.

1) An object of type ranges::fold_left_with_iter_result<I, U>.
  • The member ranges::in_value_result::in holds an iterator to the end of the range.
  • The member ranges::in_value_result::value holds the result of the left-fold of given range over f.
If the range is empty, the return value is obtained via the expression equivalent to return {std::move(first), U(std::move(init))};.
2) Same as (1) except that the return type is ranges::fold_left_with_iter_result<ranges::borrowed_iterator_t<R>, U>.

Possible implementations

class fold_left_with_iter_fn
{
    template<class O, class I, class S, class T, class F>
    constexpr auto impl(I&& first, S&& last, T&& init, F f) const
    {
        using U = std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>;
        using Ret = ranges::fold_left_with_iter_result<O, U>;
        if (first == last)
            return Ret{std::move(first), U(std::move(init))};
        U accum = std::invoke(f, std::move(init), *first);
        for (++first; first != last; ++first)
            accum = std::invoke(f, std::move(accum), *first);
        return Ret{std::move(first), std::move(accum)};
    }
 
public:
    template<std::input_iterator I, std::sentinel_for<I> S, class T,
             __indirectly_binary_left_foldable<T, I> F>
    constexpr auto operator()(I first, S last, T init, F f) const
    {
        return impl<I>(std::move(first), std::move(last), std::move(init), std::ref(f));
    }
 
    template<ranges::input_range R, class T,
             __indirectly_binary_left_foldable<T, ranges::iterator_t<R>> F>
    constexpr auto operator()(R&& r, T init, F f) const
    {
        return impl<ranges::borrowed_iterator_t<R>>(
            ranges::begin(r), ranges::end(r), std::move(init), std::ref(f)
        );
    }
};
 
inline constexpr fold_left_with_iter_fn fold_left_with_iter;

Complexity

Exactly ranges::distance(first, last) applications of the function object f.

Notes

The following table compares all constrained folding algorithms:

Fold function template Starts from Initial value Return type
ranges::fold_left left init U
ranges::fold_left_first left first element std::optional<U>
ranges::fold_right right init U
ranges::fold_right_last right last element std::optional<U>
ranges::fold_left_with_iter left init

(1) std::in_value_result<I, U>

(2) std::in_value_result<BR, U>,

where BR is ranges::borrowed_iterator_t<R>

ranges::fold_left_first_with_iter left first element

(1) std::in_value_result<I, std::optional<U>>

(2) std::in_value_result<BR, std::optional<U>>

where BR is ranges::borrowed_iterator_t<R>

Feature-test macro Value Std Comment
__cpp_lib_ranges_fold 202207L (C++23) std::ranges fold algorithms

Example

#include <algorithm>
#include <cassert>
#include <functional>
#include <iostream>
#include <ranges>
#include <utility>
#include <vector>
 
int main()
{
    std::vector<int> v {1, 2, 3, 4, 5, 6, 7, 8};
 
    auto sum = std::ranges::fold_left_with_iter(v.begin(), v.end(), 6, std::plus<int>());
    std::cout << "sum: " << sum.value << '\n';
    assert(sum.in == v.end());
 
    auto mul = std::ranges::fold_left_with_iter(v, 0X69, std::multiplies<int>());
    std::cout << "mul: " << mul.value << '\n';
    assert(mul.in == v.end());
 
    // get the product of the std::pair::second of all pairs in the vector:
    std::vector<std::pair<char, float>> data {{'A', 2.f}, {'B', 3.f}, {'C', 3.5f}};
    auto sec = std::ranges::fold_left_with_iter
    (
        data | std::ranges::views::values, 2.0f, std::multiplies<>()
    );
    std::cout << "sec: " << sec.value << '\n';
 
    // use a program defined function object (lambda-expression):
    auto lambda = [](int x, int y){ return x + 0B110 + y; };
    auto val = std::ranges::fold_left_with_iter(v, -42, lambda);
    std::cout << "val: " << val.value << '\n';
    assert(val.in == v.end());
}

Output:

sum: 42
mul: 4233600
sec: 42
val: 42

References

  • C++23 standard (ISO/IEC 14882:2023):
  • 27.6.18 Fold [alg.fold]

See also

left-folds a range of elements
(niebloid)
left-folds a range of elements using the first element as an initial value
(niebloid)
right-folds a range of elements
(niebloid)
right-folds a range of elements using the last element as an initial value
(niebloid)
left-folds a range of elements using the first element as an initial value, and returns a pair (iterator, optional)
(niebloid)
sums up or folds a range of elements
(function template)
(C++17)
similar to std::accumulate, except out of order
(function template)