std::ranges::fold_left_with_iter, std::ranges::fold_left_with_iter_result
Defined in header <algorithm>
|
||
Call signature |
||
template< std::input_iterator I, std::sentinel_for<I> S, class T, __indirectly_binary_left_foldable<T, I> F > |
(1) | (since C++23) |
template< ranges::input_range R, class T, __indirectly_binary_left_foldable<T, ranges::iterator_t<R>> F > |
(2) | (since C++23) |
Helper concepts |
||
template< class F, class T, class I > concept __indirectly_binary_left_foldable = /* see description */; |
(3) | (exposition only*) |
Helper class template |
||
template< class I, class T > using fold_left_with_iter_result = ranges::in_value_result<I, T>; |
(4) | (since C++23) |
Left-folds the elements of given range, that is, returns the result of evaluation of the chain expression:f(f(f(f(init, x1), x2), ...), xn)
, where x1
, x2
, ..., xn
are elements of the range.
Informally, ranges::fold_left_with_iter
behaves like std::accumulate's overload that accepts a binary predicate.
The behavior is undefined if [
first,
last)
is not a valid range.
[
first,
last)
. Helper concepts |
||
template< class F, class T, class I, class U > concept /*indirectly-binary-left-foldable-impl*/ = |
(3A) | (exposition only*) |
template< class F, class T, class I > concept /*indirectly-binary-left-foldable*/ = |
(3B) | (exposition only*) |
The function-like entities described on this page are niebloids, that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
In practice, they may be implemented as function objects, or with special compiler extensions.
Parameters
first, last | - | the range of elements to fold |
r | - | the range of elements to fold |
init | - | the initial value of the fold |
f | - | the binary function object |
Return value
Let U be std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>.
- The member ranges::in_value_result::in holds an iterator to the end of the range.
- The member ranges::in_value_result::value holds the result of the left-fold of given range over f.
Possible implementations
class fold_left_with_iter_fn { template<class O, class I, class S, class T, class F> constexpr auto impl(I&& first, S&& last, T&& init, F f) const { using U = std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>; using Ret = ranges::fold_left_with_iter_result<O, U>; if (first == last) return Ret{std::move(first), U(std::move(init))}; U accum = std::invoke(f, std::move(init), *first); for (++first; first != last; ++first) accum = std::invoke(f, std::move(accum), *first); return Ret{std::move(first), std::move(accum)}; } public: template<std::input_iterator I, std::sentinel_for<I> S, class T, __indirectly_binary_left_foldable<T, I> F> constexpr auto operator()(I first, S last, T init, F f) const { return impl<I>(std::move(first), std::move(last), std::move(init), std::ref(f)); } template<ranges::input_range R, class T, __indirectly_binary_left_foldable<T, ranges::iterator_t<R>> F> constexpr auto operator()(R&& r, T init, F f) const { return impl<ranges::borrowed_iterator_t<R>>( ranges::begin(r), ranges::end(r), std::move(init), std::ref(f) ); } }; inline constexpr fold_left_with_iter_fn fold_left_with_iter; |
Complexity
Exactly ranges::distance(first, last) applications of the function object f.
Notes
The following table compares all constrained folding algorithms:
Fold function template | Starts from | Initial value | Return type |
---|---|---|---|
ranges::fold_left | left | init | U |
ranges::fold_left_first | left | first element | std::optional<U> |
ranges::fold_right | right | init | U |
ranges::fold_right_last | right | last element | std::optional<U> |
ranges::fold_left_with_iter | left | init |
(1) std::in_value_result<I, U> (2) std::in_value_result<BR, U>, where BR is ranges::borrowed_iterator_t<R> |
ranges::fold_left_first_with_iter | left | first element |
(1) std::in_value_result<I, std::optional<U>> (2) std::in_value_result<BR, std::optional<U>> where BR is ranges::borrowed_iterator_t<R> |
Feature-test macro | Value | Std | Comment |
---|---|---|---|
__cpp_lib_ranges_fold |
202207L | (C++23) | std::ranges fold algorithms
|
Example
#include <algorithm> #include <cassert> #include <functional> #include <iostream> #include <ranges> #include <utility> #include <vector> int main() { std::vector<int> v {1, 2, 3, 4, 5, 6, 7, 8}; auto sum = std::ranges::fold_left_with_iter(v.begin(), v.end(), 6, std::plus<int>()); std::cout << "sum: " << sum.value << '\n'; assert(sum.in == v.end()); auto mul = std::ranges::fold_left_with_iter(v, 0X69, std::multiplies<int>()); std::cout << "mul: " << mul.value << '\n'; assert(mul.in == v.end()); // get the product of the std::pair::second of all pairs in the vector: std::vector<std::pair<char, float>> data {{'A', 2.f}, {'B', 3.f}, {'C', 3.5f}}; auto sec = std::ranges::fold_left_with_iter ( data | std::ranges::views::values, 2.0f, std::multiplies<>() ); std::cout << "sec: " << sec.value << '\n'; // use a program defined function object (lambda-expression): auto lambda = [](int x, int y){ return x + 0B110 + y; }; auto val = std::ranges::fold_left_with_iter(v, -42, lambda); std::cout << "val: " << val.value << '\n'; assert(val.in == v.end()); }
Output:
sum: 42 mul: 4233600 sec: 42 val: 42
References
- C++23 standard (ISO/IEC 14882:2023):
- 27.6.18 Fold [alg.fold]
See also
(C++23) |
left-folds a range of elements (niebloid) |
(C++23) |
left-folds a range of elements using the first element as an initial value (niebloid) |
(C++23) |
right-folds a range of elements (niebloid) |
(C++23) |
right-folds a range of elements using the last element as an initial value (niebloid) |
left-folds a range of elements using the first element as an initial value, and returns a pair (iterator, optional) (niebloid) | |
sums up or folds a range of elements (function template) | |
(C++17) |
similar to std::accumulate, except out of order (function template) |