std::ranges::minmax_element, std::ranges::minmax_element_result

From cppreference.com
< cpp‎ | algorithm‎ | ranges
 
 
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Execution policies (C++17)
Non-modifying sequence operations
(C++11)(C++11)(C++11)
(C++17)
Modifying sequence operations
Partitioning operations
Sorting operations
(C++11)
Binary search operations
Set operations (on sorted ranges)
Heap operations
(C++11)
Minimum/maximum operations
(C++11)
(C++17)

Permutations
Numeric operations
Operations on uninitialized storage
(C++17)
(C++17)
(C++17)
C library
 
Constrained algorithms
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
ranges::minmax_element
Permutations
Numeric operations
Fold operations
Operations on uninitialized storage
Return types
 
Defined in header <algorithm>
Call signature
template< std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity,

          std::indirect_strict_weak_order<std::projected<I, Proj>> Comp = ranges::less >
constexpr minmax_element_result<I>

    minmax_element( I first, S last, Comp comp = {}, Proj proj = {} );
(1) (since C++20)
template< ranges::forward_range R, class Proj = std::identity,

          std::indirect_strict_weak_order<
              std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less >
constexpr minmax_element_result<ranges::borrowed_iterator_t<R>>

    minmax_element( R&& r, Comp comp = {}, Proj proj = {} );
(2) (since C++20)
Helper types
template< class I >
using minmax_element_result = ranges::min_max_result<I>;
(3) (since C++20)
1) Finds the smallest and largest elements in the range [firstlast).
2) Same as (1), but uses r as the source range, as if using ranges::begin(r) as first and ranges::end(r) as last.

The function-like entities described on this page are niebloids, that is:

In practice, they may be implemented as function objects, or with special compiler extensions.

Parameters

first, last - iterator-sentinel pair denoting the range to examine
r - the range to examine
comp - comparison to apply to the projected elements
proj - projection to apply to the elements.

Return value

An object consisting of an iterator to the smallest element as the first element and an iterator to the greatest element as the second. Returns {first, first} if the range is empty. If several elements are equivalent to the smallest element, the iterator to the first such element is returned. If several elements are equivalent to the largest element, the iterator to the last such element is returned.

Complexity

At most max(floor((3 / 2) * (N − 1)), 0) applications of the comparison and twice as many applications of the projection, where N = ranges::distance(first, last).

Possible implementation

struct minmax_element_fn
{
  template<std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity,
           std::indirect_strict_weak_order<std::projected<I, Proj>> Comp = ranges::less>
  constexpr ranges::minmax_element_result<I>
      operator()(I first, S last, Comp comp = {}, Proj proj = {}) const
  {
    auto min = first, max = first;
 
    if (first == last || ++first == last) {
      return {min, max};
    }
 
    if (std::invoke(comp, std::invoke(proj, *first), std::invoke(proj, *min))) {
      min = first;
    } else {
      max = first;
    }
 
    while (++first != last) {
      auto i = first;
      if (++first == last) {
        if (std::invoke(comp, std::invoke(proj, *i), std::invoke(proj, *min))) {
          min = i;
        }
        else if (!(std::invoke(comp, std::invoke(proj, *i), std::invoke(proj, *max)))) {
          max = i;
        }
        break;
      } else {
        if (std::invoke(comp, std::invoke(proj, *first), std::invoke(proj, *i))) {
          if (std::invoke(comp, std::invoke(proj, *first), std::invoke(proj, *min))) {
            min = first;
          }
          if (!(std::invoke(comp, std::invoke(proj, *i), std::invoke(proj, *max)))) {
            max = i;
          }
        } else {
          if (std::invoke(comp, std::invoke(proj, *i), std::invoke(proj, *min))) {
            min = i;
          }
          if (!(std::invoke(comp, std::invoke(proj, *first), std::invoke(proj, *max)))) {
            max = first;
          }
        }
      }
    }
    return {min, max};
  }
 
  template<ranges::forward_range R, class Proj = std::identity,
           std::indirect_strict_weak_order<
               std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less>
  constexpr ranges::minmax_element_result<ranges::borrowed_iterator_t<R>>
      operator()(R&& r, Comp comp = {}, Proj proj = {}) const
  {
    return (*this)(ranges::begin(r), ranges::end(r), std::ref(comp), std::ref(proj));
  }
};
 
inline constexpr minmax_element_fn minmax_element;

Example

#include <algorithm>
#include <iostream>
#include <iterator>
namespace rng = std::ranges;
 
int main()
{
    const auto v = {3, 9, 1, 4, 1, 2, 5, 9};
    const auto [min, max] = rng::minmax_element(v);
    std::cout
        << "min = " << *min << ", at [" << rng::distance(v.begin(), min) << "]\n"
        << "max = " << *max << ", at [" << rng::distance(v.begin(), max) << "]\n";
}

Output:

min = 1, at [2]
max = 9, at [7]

See also

returns the smallest element in a range
(niebloid)
returns the largest element in a range
(niebloid)
returns the smaller and larger of two elements
(niebloid)
returns the smallest and the largest elements in a range
(function template)