std::ranges::move, std::ranges::move_result
Defined in header <algorithm>
|
||
Call signature |
||
template< std::input_iterator I, std::sentinel_for<I> S, std::weakly_incrementable O > requires std::indirectly_movable<I, O> |
(1) | (since C++20) |
template< ranges::input_range R, std::weakly_incrementable O > requires std::indirectly_movable<ranges::iterator_t<R>, O> |
(2) | (since C++20) |
Helper types |
||
template< class I, class O > using move_result = ranges::in_out_result<I, O>; |
(3) | (since C++20) |
[
first,
last)
, to another range beginning at result.
The behavior is undefined if result is within the range [
first,
last)
. In such a case, ranges::move_backward may be used instead.The elements in the moved-from range will still contain valid values of the appropriate type, but not necessarily the same values as before the move.
The function-like entities described on this page are niebloids, that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
In practice, they may be implemented as function objects, or with special compiler extensions.
Parameters
first | - | the beginning of the range of elements to move |
last | - | the end of the range of elements to move |
r | - | the range of the elements to move |
result | - | the beginning of the destination range |
Return value
{last, result + N}, where
Complexity
Exactly N move assignments.
Notes
When moving overlapping ranges, ranges::move is appropriate when moving to the left (beginning of the destination range is outside the source range) while ranges::move_backward is appropriate when moving to the right (end of the destination range is outside the source range).
Possible implementation
struct move_fn { template<std::input_iterator I, std::sentinel_for<I> S, std::weakly_incrementable O> requires std::indirectly_movable<I, O> constexpr ranges::move_result<I, O> operator()(I first, S last, O result) const { for (; first != last; ++first, ++result) *result = ranges::iter_move(first); return {std::move(first), std::move(result)}; } template<ranges::input_range R, std::weakly_incrementable O> requires std::indirectly_movable<ranges::iterator_t<R>, O> constexpr ranges::move_result<ranges::borrowed_iterator_t<R>, O> operator()(R&& r, O result) const { return (*this)(ranges::begin(r), ranges::end(r), std::move(result)); } }; inline constexpr move_fn move {}; |
Example
The following code moves thread objects (which themselves are non copyable) from one container to another.
#include <algorithm> #include <chrono> #include <iostream> #include <iterator> #include <list> #include <thread> #include <vector> using namespace std::literals::chrono_literals; void f(std::chrono::milliseconds n) { std::this_thread::sleep_for(n); std::cout << "thread with n=" << n.count() << "ms ended" << std::endl; } int main() { std::vector<std::jthread> v; v.emplace_back(f, 400ms); v.emplace_back(f, 600ms); v.emplace_back(f, 800ms); std::list<std::jthread> l; // std::ranges::copy() would not compile, because std::jthread is non-copyable std::ranges::move(v, std::back_inserter(l)); }
Output:
thread with n=400ms ended thread with n=600ms ended thread with n=800ms ended
See also
(C++20) |
moves a range of elements to a new location in backwards order (niebloid) |
(C++20)(C++20) |
copies a range of elements to a new location (niebloid) |
(C++20) |
copies a range of elements in backwards order (niebloid) |
(C++11) |
moves a range of elements to a new location (function template) |
(C++11) |
obtains an rvalue reference (function template) |