std::reduce
Defined in header <numeric>
|
||
(1) | ||
template< class InputIt > typename std::iterator_traits<InputIt>::value_type |
(since C++17) (until C++20) |
|
template< class InputIt > constexpr typename std::iterator_traits<InputIt>::value_type |
(since C++20) | |
template< class ExecutionPolicy, class ForwardIt > typename std::iterator_traits<ForwardIt>::value_type |
(2) | (since C++17) |
(3) | ||
template< class InputIt, class T > T reduce( InputIt first, InputIt last, T init ); |
(since C++17) (until C++20) |
|
template< class InputIt, class T > constexpr T reduce( InputIt first, InputIt last, T init ); |
(since C++20) | |
template< class ExecutionPolicy, class ForwardIt, class T > T reduce( ExecutionPolicy&& policy, |
(4) | (since C++17) |
(5) | ||
template< class InputIt, class T, class BinaryOp > T reduce( InputIt first, InputIt last, T init, BinaryOp binary_op ); |
(since C++17) (until C++20) |
|
template< class InputIt, class T, class BinaryOp > constexpr T reduce( InputIt first, InputIt last, T init, BinaryOp binary_op ); |
(since C++20) | |
template< class ExecutionPolicy, class ForwardIt, class T, class BinaryOp > T reduce( ExecutionPolicy&& policy, |
(6) | (since C++17) |
[
first,
last)
, possibly permuted and aggregated in unspecified manner, along with the initial value init over binary_op.
std::is_execution_policy_v<std::decay_t<ExecutionPolicy>> is true. |
(until C++20) |
std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>> is true. |
(since C++20) |
The behavior is non-deterministic if binary_op is not associative or not commutative.
The behavior is undefined if binary_op modifies any element or invalidates any iterator in [
first,
last)
, including the end iterator.
Parameters
first, last | - | the range of elements to apply the algorithm to |
init | - | the initial value of the generalized sum |
policy | - | the execution policy to use. See execution policy for details. |
binary_op | - | binary FunctionObject that will be applied in unspecified order to the result of dereferencing the input iterators, the results of other binary_op and init. |
Type requirements | ||
-InputIt must meet the requirements of LegacyInputIterator.
| ||
-ForwardIt must meet the requirements of LegacyForwardIterator.
| ||
-T must meet the requirements of MoveConstructible. and binary_op(init, *first), binary_op(*first, init), binary_op(init, init), and binary_op(*first, *first) must be convertible to T .
|
Return value
Generalized sum of init and *first, *(first + 1), ... *(last - 1) over binary_op,
where generalized sum GSUM(op, a
1, ..., a
N) is defined as follows:
- if N = 1, a
1 - if N > 1, op(GSUM(op, b
1, ..., b
K), GSUM(op, b
M, ..., b
N)) where
- b
1, ..., b
N may be any permutation of a1, ..., aN and - 1 < K + 1 = M ≤ N
- b
in other words, reduce
behaves like std::accumulate except the elements of the range may be grouped and rearranged in arbitrary order
Complexity
O(last - first) applications of binary_op.
Exceptions
The overloads with a template parameter named ExecutionPolicy
report errors as follows:
- If execution of a function invoked as part of the algorithm throws an exception and
ExecutionPolicy
is one of the standard policies, std::terminate is called. For any otherExecutionPolicy
, the behavior is implementation-defined. - If the algorithm fails to allocate memory, std::bad_alloc is thrown.
Notes
If the range is empty, init is returned, unmodified
Example
side-by-side comparison between std::reduce
and std::accumulate:
#if PARALLEL #include <execution> #define SEQ std::execution::seq, #define PAR std::execution::par, #else #define SEQ #define PAR #endif #include <chrono> #include <iomanip> #include <iostream> #include <numeric> #include <utility> #include <vector> int main() { std::cout.imbue(std::locale("en_US.UTF-8")); std::cout << std::fixed << std::setprecision(1); auto eval = [](auto fun) { const auto t1 = std::chrono::high_resolution_clock::now(); const auto [name, result] = fun(); const auto t2 = std::chrono::high_resolution_clock::now(); const std::chrono::duration<double, std::milli> ms = t2 - t1; std::cout << std::setw(28) << std::left << name << "sum: " << result << "\t time: " << ms.count() << " ms\n"; }; { const std::vector<double> v(100'000'007, 0.1); eval([&v]{ return std::pair{"std::accumulate (double)", std::accumulate(v.cbegin(), v.cend(), 0.0)}; } ); eval([&v]{ return std::pair{"std::reduce (seq, double)", std::reduce(SEQ v.cbegin(), v.cend())}; } ); eval([&v]{ return std::pair{"std::reduce (par, double)", std::reduce(PAR v.cbegin(), v.cend())}; } ); } { const std::vector<long> v(100'000'007, 1); eval([&v]{ return std::pair{"std::accumulate (long)", std::accumulate(v.cbegin(), v.cend(), 0l)}; } ); eval([&v]{ return std::pair{"std::reduce (seq, long)", std::reduce(SEQ v.cbegin(), v.cend())}; } ); eval([&v]{ return std::pair{"std::reduce (par, long)", std::reduce(PAR v.cbegin(), v.cend())}; } ); } }
Possible output:
// POSIX: g++ -std=c++23 ./example.cpp -ltbb -O3; ./a.out std::accumulate (double) sum: 10,000,000.7 time: 356.9 ms std::reduce (seq, double) sum: 10,000,000.7 time: 140.1 ms std::reduce (par, double) sum: 10,000,000.7 time: 140.1 ms std::accumulate (long) sum: 100,000,007 time: 46.0 ms std::reduce (seq, long) sum: 100,000,007 time: 67.3 ms std::reduce (par, long) sum: 100,000,007 time: 63.3 ms // POSIX: g++ -std=c++23 ./example.cpp -ltbb -O3 -DPARALLEL; ./a.out std::accumulate (double) sum: 10,000,000.7 time: 353.4 ms std::reduce (seq, double) sum: 10,000,000.7 time: 140.7 ms std::reduce (par, double) sum: 10,000,000.7 time: 24.7 ms std::accumulate (long) sum: 100,000,007 time: 42.4 ms std::reduce (seq, long) sum: 100,000,007 time: 52.0 ms std::reduce (par, long) sum: 100,000,007 time: 23.1 ms
See also
sums up or folds a range of elements (function template) | |
applies a function to a range of elements, storing results in a destination range (function template) | |
(C++17) |
applies an invocable, then reduces out of order (function template) |
(C++23) |
left-folds a range of elements (niebloid) |