std::for_each_n
Defined in header <algorithm>
|
||
(1) | ||
template< class InputIt, class Size, class UnaryFunction > InputIt for_each_n( InputIt first, Size n, UnaryFunction f ); |
(since C++17) (until C++20) |
|
template< class InputIt, class Size, class UnaryFunction > constexpr InputIt for_each_n( InputIt first, Size n, UnaryFunction f ); |
(since C++20) | |
template< class ExecutionPolicy, class ForwardIt, class Size, class UnaryFunction2 > ForwardIt for_each_n( ExecutionPolicy&& policy, |
(2) | (since C++17) |
[
first,
first + n)
, in order.[
first,
first + n)
(not necessarily in order). The algorithm is executed according to policy. This overload does not participate in overload resolution unless
std::is_execution_policy_v<std::decay_t<ExecutionPolicy>> is true. |
(until C++20) |
std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>> is true. |
(since C++20) |
For both overloads, if the iterator type is mutable, f may modify the elements of the range through the dereferenced iterator. If f returns a result, the result is ignored. If n is less than zero, the behavior is undefined.
Unlike the rest of the parallel algorithms, for_each_n
is not allowed to make copies of the elements in the sequence even if they are trivially copyable.
Parameters
first | - | the beginning of the range to apply the function to |
n | - | the number of elements to apply the function to |
policy | - | the execution policy to use. See execution policy for details. |
f | - | function object, to be applied to the result of dereferencing every iterator in the range [ first, first + n) The signature of the function should be equivalent to the following: void fun(const Type &a); The signature does not need to have const &. |
Type requirements | ||
-InputIt must meet the requirements of LegacyInputIterator.
| ||
-ForwardIt must meet the requirements of LegacyForwardIterator.
| ||
-UnaryFunction must meet the requirements of MoveConstructible. Does not have to be CopyConstructible.
| ||
-UnaryFunction2 must meet the requirements of CopyConstructible.
|
Return value
An iterator equal to first + n, or more formally, to std::advance(first, n).
Complexity
Exactly n applications of f.
Exceptions
The overload with a template parameter named ExecutionPolicy
reports errors as follows:
- If execution of a function invoked as part of the algorithm throws an exception and
ExecutionPolicy
is one of the standard policies, std::terminate is called. For any otherExecutionPolicy
, the behavior is implementation-defined. - If the algorithm fails to allocate memory, std::bad_alloc is thrown.
Possible implementation
See also the implementation in libstdc++, libc++ and MSVC stdlib.
template<class InputIt, class Size, class UnaryFunction> InputIt for_each_n(InputIt first, Size n, UnaryFunction f) { for (Size i = 0; i < n; ++first, (void) ++i) f(*first); return first; } |
Example
#include <algorithm> #include <iostream> #include <vector> void println(auto const& v) { for (auto count{v.size()}; auto const& e : v) std::cout << e << (--count ? ", " : "\n"); } int main() { std::vector<int> vi {1, 2, 3, 4, 5}; println(vi); std::for_each_n(vi.begin(), 3, [](auto& n) { n *= 2; }); println(vi); }
Output:
1, 2, 3, 4, 5 2, 4, 6, 4, 5
See also
applies a function to a range of elements, storing results in a destination range (function template) | |
range-for loop(C++11)
|
executes loop over range |
applies a function to a range of elements (function template) | |
(C++20) |
applies a function object to the first n elements of a sequence (niebloid) |