std::ranges::adjacent_find

From cppreference.com
< cpp‎ | algorithm‎ | ranges
 
 
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Execution policies (C++17)
Non-modifying sequence operations
(C++11)(C++11)(C++11)
(C++17)
Modifying sequence operations
Partitioning operations
Sorting operations
(C++11)
Binary search operations
Set operations (on sorted ranges)
Heap operations
(C++11)
Minimum/maximum operations
(C++11)
(C++17)

Permutations
Numeric operations
Operations on uninitialized storage
(C++17)
(C++17)
(C++17)
C library
 
Constrained algorithms
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutations
Numeric operations
Fold operations
Operations on uninitialized storage
Return types
 
Defined in header <algorithm>
Call signature
template< std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity,

          std::indirect_binary_predicate<
              std::projected<I, Proj>,
              std::projected<I, Proj>> Pred = ranges::equal_to >
constexpr I

    adjacent_find( I first, S last, Pred pred = {}, Proj proj = {} );
(1) (since C++20)
template< ranges::forward_range R, class Proj = std::identity,

          std::indirect_binary_predicate<
              std::projected<ranges::iterator_t<R>, Proj>,
              std::projected<ranges::iterator_t<R>, Proj>> Pred = ranges::equal_to >
constexpr ranges::borrowed_iterator_t<R>

    adjacent_find( R&& r, Pred pred = {}, Proj proj = {} );
(2) (since C++20)

Searches the range [firstlast) for two consecutive equal elements.

1) Elements are compared using pred (after projecting with the projection proj).
2) Same as (1), but uses r as the source range, as if using ranges::begin(r) as first and ranges::end(r) as last.

The function-like entities described on this page are niebloids, that is:

In practice, they may be implemented as function objects, or with special compiler extensions.

Parameters

first, last - the range of elements to examine
r - the range of the elements to examine
pred - predicate to apply to the projected elements
proj - projection to apply to the elements

Return value

An iterator to the first of the first pair of identical elements, that is, the first iterator it such that bool(std::invoke(pred, std::invoke(proj1, *it), std::invoke(proj, *(it + 1)))) is true.

If no such elements are found, an iterator equal to last is returned.

Complexity

Exactly min((result - first) + 1, (last - first) - 1) applications of the predicate and projection where result is the return value.

Possible implementation

struct adjacent_find_fn
{
    template<std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity,
             std::indirect_binary_predicate<
                 std::projected<I, Proj>,
                 std::projected<I, Proj>> Pred = ranges::equal_to>
    constexpr I operator()(I first, S last, Pred pred = {}, Proj proj = {}) const
    {
        if (first == last)
            return first;
        auto next = ranges::next(first);
        for (; next != last; ++next, ++first)
            if (std::invoke(pred, std::invoke(proj, *first), std::invoke(proj, *next)))
                return first;
        return next;
    }
 
    template<ranges::forward_range R, class Proj = std::identity,
             std::indirect_binary_predicate<
                 std::projected<ranges::iterator_t<R>, Proj>,
                 std::projected<ranges::iterator_t<R>, Proj>> Pred = ranges::equal_to>
    constexpr ranges::borrowed_iterator_t<R>
        operator()(R&& r, Pred pred = {}, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj));
    }
};
 
inline constexpr adjacent_find_fn adjacent_find;

Example

#include <algorithm>
#include <functional>
#include <iostream>
 
int main()
{
    const auto v = {0, 1, 2, 3, 40, 40, 41, 41, 5}; /*
                                ^^          ^^       */
    namespace ranges = std::ranges;
 
    if (auto it = ranges::adjacent_find(v.begin(), v.end()); it == v.end())
        std::cout << "No matching adjacent elements\n";
    else
        std::cout << "The first adjacent pair of equal elements is at ["
                  << ranges::distance(v.begin(), it) << "] == " << *it << '\n';
 
    if (auto it = ranges::adjacent_find(v, ranges::greater()); it == v.end())
        std::cout << "The entire vector is sorted in ascending order\n";
    else
        std::cout << "The last element in the non-decreasing subsequence is at ["
                  << ranges::distance(v.begin(), it) << "] == " << *it << '\n';
}

Output:

The first adjacent pair of equal elements is at [4] == 40
The last element in the non-decreasing subsequence is at [7] == 41

See also

removes consecutive duplicate elements in a range
(niebloid)
finds the first two adjacent items that are equal (or satisfy a given predicate)
(function template)