std::ranges::partition
Defined in header <algorithm>
|
||
Call signature |
||
template< std::permutable I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred > |
(1) | (since C++20) |
template< ranges::forward_range R, class Proj = std::identity, std::indirect_unary_predicate< |
(2) | (since C++20) |
[
first,
last)
in such a way that the projection proj of all elements for which the predicate pred returns true precede the projection proj of elements for which predicate pred returns false. Relative order of elements is not preserved.The function-like entities described on this page are niebloids, that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
In practice, they may be implemented as function objects, or with special compiler extensions.
Parameters
first, last | - | the range of elements to reorder |
r | - | the range of elements to reorder |
pred | - | predicate to apply to the projected elements |
proj | - | projection to apply to the elements |
Return value
A subrange starting with an iterator to the first element of the second group and finishing with an iterator equal to last. (2) returns std::ranges::dangling if r is an rvalue of non-borrowed_range
type.
Complexity
Given N = ranges::distance(first, last), exactly N applications of the predicate and projection. At most N / 2 swaps if I
models ranges::bidirectional_iterator, and at most N swaps otherwise.
Possible implementation
struct partition_fn { template<std::permutable I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred> constexpr ranges::subrange<I> operator()(I first, S last, Pred pred, Proj proj = {}) const { first = ranges::find_if_not(first, last, std::ref(pred), std::ref(proj)); if (first == last) return {first, first}; for (auto i = ranges::next(first); i != last; ++i) { if (std::invoke(pred, std::invoke(proj, *i))) { ranges::iter_swap(i, first); ++first; } } return {std::move(first), std::move(last)}; } template<ranges::forward_range R, class Proj = std::identity, std::indirect_unary_predicate< std::projected<ranges::iterator_t<R>, Proj>> Pred> requires std::permutable<ranges::iterator_t<R>> constexpr ranges::borrowed_subrange_t<R> operator()(R&& r, Pred pred, Proj proj = {}) const { return (*this)(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj)); } }; inline constexpr partition_fn partition; |
Example
#include <algorithm> #include <forward_list> #include <functional> #include <iostream> #include <iterator> #include <ranges> #include <vector> namespace ranges = std::ranges; template<class I, std::sentinel_for<I> S, class Cmp = ranges::less> requires std::sortable<I, Cmp> void quicksort(I first, S last, Cmp cmp = Cmp {}) { using reference = std::iter_reference_t<I>; if (first == last) return; auto size = ranges::distance(first, last); auto pivot = ranges::next(first, size - 1); ranges::iter_swap(pivot, ranges::next(first, size / 2)); auto tail = ranges::partition(first, pivot, [=](reference em) { return std::invoke(cmp, em, *pivot); // em < pivot }); ranges::iter_swap(pivot, tail.begin()); quicksort(first, tail.begin(), std::ref(cmp)); quicksort(ranges::next(tail.begin()), last, std::ref(cmp)); } int main() { std::ostream_iterator<int> cout {std::cout, " "}; std::vector<int> v {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; std::cout << "Original vector: \t"; ranges::copy(v, cout); auto tail = ranges::partition(v, [](int i) { return i % 2 == 0; }); std::cout << "\nPartitioned vector: \t"; ranges::copy(ranges::begin(v), ranges::begin(tail), cout); std::cout << "│ "; ranges::copy(tail, cout); std::forward_list<int> fl {1, 30, -4, 3, 5, -4, 1, 6, -8, 2, -5, 64, 1, 92}; std::cout << "\nUnsorted list: \t\t"; ranges::copy(fl, cout); quicksort(ranges::begin(fl), ranges::end(fl), ranges::greater {}); std::cout << "\nQuick-sorted list: \t"; ranges::copy(fl, cout); std::cout << '\n'; }
Possible output:
Original vector: 0 1 2 3 4 5 6 7 8 9 Partitioned vector: 0 8 2 6 4 │ 5 3 7 1 9 Unsorted list: 1 30 -4 3 5 -4 1 6 -8 2 -5 64 1 92 Quick-sorted list: 92 64 30 6 5 3 2 1 1 1 -4 -4 -5 -8
See also
(C++20) |
copies a range dividing the elements into two groups (niebloid) |
(C++20) |
determines if the range is partitioned by the given predicate (niebloid) |
(C++20) |
divides elements into two groups while preserving their relative order (niebloid) |
divides a range of elements into two groups (function template) |