std::ranges::for_each, std::ranges::for_each_result
Defined in header <algorithm>
|
||
Call signature |
||
template< std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirectly_unary_invocable<std::projected<I, Proj>> Fun > |
(1) | (since C++20) |
template< ranges::input_range R, class Proj = std::identity, std::indirectly_unary_invocable< |
(2) | (since C++20) |
Helper types |
||
template< class I, class F > using for_each_result = ranges::in_fun_result<I, F>; |
(3) | (since C++20) |
[
first,
last)
, in order. For both overloads, if the iterator type is mutable, f may modify the elements of the range through the dereferenced iterator. If f returns a result, the result is ignored.
The function-like entities described on this page are niebloids, that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
In practice, they may be implemented as function objects, or with special compiler extensions.
Parameters
first, last | - | iterator-sentinel pair denoting the range to apply the function to |
r | - | the range of elements to apply the function to |
f | - | the function to apply to the projected range |
proj | - | projection to apply to the elements |
Return value
{std::ranges::next(std::move(first), last), std::move(f)}
Complexity
Exactly last - first applications of f and proj.
Possible implementation
struct for_each_fn { template<std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirectly_unary_invocable<std::projected<I, Proj>> Fun> constexpr ranges::for_each_result<I, Fun> operator()(I first, S last, Fun f, Proj proj = {}) const { for (; first != last; ++first) std::invoke(f, std::invoke(proj, *first)); return {std::move(first), std::move(f)}; } template<ranges::input_range R, class Proj = std::identity, std::indirectly_unary_invocable<std::projected<ranges::iterator_t<R>, Proj>> Fun> constexpr ranges::for_each_result<ranges::borrowed_iterator_t<R>, Fun> operator()(R&& r, Fun f, Proj proj = {}) const { return (*this)(ranges::begin(r), ranges::end(r), std::move(f), std::ref(proj)); } }; inline constexpr for_each_fn for_each; |
Example
The following example uses a lambda expression to increment all of the elements of a vector and then uses an overloaded operator()
in a functor to compute their sum. Note that to compute the sum, it is recommended to use the dedicated algorithm std::accumulate.
#include <algorithm> #include <cassert> #include <iostream> #include <string> #include <utility> #include <vector> struct Sum { void operator()(int n) { sum += n; } int sum {0}; }; int main() { std::vector<int> nums {3, 4, 2, 8, 15, 267}; auto print = [](const auto& n) { std::cout << ' ' << n; }; namespace ranges = std::ranges; std::cout << "before:"; ranges::for_each(std::as_const(nums), print); print('\n'); ranges::for_each(nums, [](int& n) { ++n; }); // calls Sum::operator() for each number auto [i, s] = ranges::for_each(nums.begin(), nums.end(), Sum()); assert(i == nums.end()); std::cout << "after: "; ranges::for_each(nums.cbegin(), nums.cend(), print); std::cout << "\n" "sum: " << s.sum << '\n'; using pair = std::pair<int, std::string>; std::vector<pair> pairs {{1,"one"}, {2,"two"}, {3,"tree"}}; std::cout << "project the pair::first: "; ranges::for_each(pairs, print, [](const pair& p) { return p.first; }); std::cout << "\n" "project the pair::second:"; ranges::for_each(pairs, print, &pair::second); print('\n'); }
Output:
before: 3 4 2 8 15 267 after: 4 5 3 9 16 268 sum: 305 project the pair::first: 1 2 3 project the pair::second: one two tree
See also
range-for loop(C++11)
|
executes loop over range |
(C++20) |
applies a function to a range of elements (niebloid) |
(C++20) |
applies a function object to the first n elements of a sequence (niebloid) |
applies a function to a range of elements (function template) |