std::scalbn, std::scalbnf, std::scalbnl, std::scalbln, std::scalblnf, std::scalblnl

From cppreference.com
< cpp‎ | numeric‎ | math
 
 
 
Common mathematical functions
Functions
Basic operations
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)(C++11)(C++11)
Exponential functions
(C++11)
(C++11)
(C++11)
(C++11)
Power functions
(C++11)
(C++11)
Trigonometric and hyperbolic functions
(C++11)
(C++11)
(C++11)
Error and gamma functions
(C++11)
(C++11)
(C++11)
(C++11)
Nearest integer floating point operations
(C++11)(C++11)(C++11)
(C++11)
(C++11)
(C++11)(C++11)(C++11)
Floating point manipulation functions
scalbnscalbln
(C++11)(C++11)
(C++11)
(C++11)
(C++11)(C++11)
(C++11)
Classification/Comparison
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
Macro constants
(C++11)(C++11)(C++11)(C++11)(C++11)
 
Defined in header <cmath>
int exponent
(1)
float       scalbn ( float num, int exp );

double      scalbn ( double num, int exp );

long double scalbn ( long double num, int exp );
(since C++11)
(until C++23)
constexpr /* floating-point-type */
            scalbn ( /* floating-point-type */ num, int exp );
(since C++23)
float       scalbnf( float num, int exp );
(2) (since C++11)
(constexpr since C++23)
long double scalbnl( long double num, int exp );
(3) (since C++11)
(constexpr since C++23)
long exponent
(4)
float       scalbln ( float num, long exp );

double      scalbln ( double num, long exp );

long double scalbln ( long double num, long exp );
(since C++11)
(until C++23)
constexpr /* floating-point-type */
            scalbln ( /* floating-point-type */ num, long exp );
(since C++23)
float       scalblnf( float num, long exp );
(5) (since C++11)
(constexpr since C++23)
long double scalblnl( long double num, long exp );
(6) (since C++11)
(constexpr since C++23)
Defined in header <cmath>
template< class Integer >
double scalbn( Integer num, int exp );
(A) (since C++11)
(constexpr since C++23)
template< class Integer >
double scalbln( Integer num, long exp );
(B) (since C++11)
(constexpr since C++23)
1-6) Multiplies a floating point value num by FLT_RADIX raised to power exp. The library provides overloads of std::scalbn and std::scalbln for all cv-unqualified floating-point types as the type of the parameter num. (since C++23)
A,B) Additional overloads are provided for all integer types, which are treated as double.

Parameters

num - floating-point or integer value
exp - integer value

Return value

If no errors occur, num multiplied by FLT_RADIX to the power of exp (num×FLT_RADIXexp
) is returned.

If a range error due to overflow occurs, ±HUGE_VAL, ±HUGE_VALF, or ±HUGE_VALL is returned.

If a range error due to underflow occurs, the correct result (after rounding) is returned.

Error handling

Errors are reported as specified in math_errhandling.

If the implementation supports IEEE floating-point arithmetic (IEC 60559),

  • Unless a range error occurs, FE_INEXACT is never raised (the result is exact)
  • Unless a range error occurs, the current rounding mode is ignored
  • If num is ±0, it is returned, unmodified
  • If num is ±∞, it is returned, unmodified
  • If exp is 0, then num is returned, unmodified
  • If num is NaN, NaN is returned

Notes

On binary systems (where FLT_RADIX is 2), std::scalbn is equivalent to std::ldexp.

Although std::scalbn and std::scalbln are specified to perform the operation efficiently, on many implementations they are less efficient than multiplication or division by a power of two using arithmetic operators.

The function name stands for "new scalb", where scalb was an older non-standard function whose second argument had floating-point type.

The std::scalbln function is provided because the factor required to scale from the smallest positive floating-point value to the largest finite one may be greater than 32767, the standard-guaranteed INT_MAX. In particular, for the 80-bit long double, the factor is 32828.

The GNU implementation does not set errno regardless of math_errhandling.

The additional overloads are not required to be provided exactly as (A,B). They only need to be sufficient to ensure that for their argument num of integer type:

  • std::scalbn(num, exp) has the same effect as std::scalbn(static_cast<double>(num), exp).
  • std::scalbln(num, exp) has the same effect as std::scalbln(static_cast<double>(num), exp).

Example

#include <cerrno>
#include <cfenv>
#include <cmath>
#include <cstring>
#include <iostream>
 
// #pragma STDC FENV_ACCESS ON
 
int main()
{
    std::cout << "scalbn(7, -4) = " << std::scalbn(7, -4) << '\n'
              << "scalbn(1, -1074) = " << std::scalbn(1, -1074)
              << " (minimum positive subnormal double)\n"
              << "scalbn(nextafter(1,0), 1024) = "
              << std::scalbn(std::nextafter(1,0), 1024)
              << " (largest finite double)\n";
 
    // special values
    std::cout << "scalbn(-0, 10) = " << std::scalbn(-0.0, 10) << '\n'
              << "scalbn(-Inf, -1) = " << std::scalbn(-INFINITY, -1) << '\n';
 
    // error handling
    errno = 0;
    std::feclearexcept(FE_ALL_EXCEPT);
 
    std::cout << "scalbn(1, 1024) = " << std::scalbn(1, 1024) << '\n';
 
    if (errno == ERANGE)
        std::cout << "    errno == ERANGE: " << std::strerror(errno) << '\n';
    if (std::fetestexcept(FE_OVERFLOW))
        std::cout << "    FE_OVERFLOW raised\n";
}

Possible output:

scalbn(7, -4) = 0.4375
scalbn(1, -1074) = 4.94066e-324 (minimum positive subnormal double)
scalbn(nextafter(1,0), 1024) = 1.79769e+308 (largest finite double)
scalbn(-0, 10) = -0
scalbn(-Inf, -1) = -inf
scalbn(1, 1024) = inf
    errno == ERANGE: Numerical result out of range
    FE_OVERFLOW raised

See also

(C++11)(C++11)
decomposes a number into significand and a power of 2
(function)
(C++11)(C++11)
multiplies a number by 2 raised to a power
(function)