Mathematical constants
From cppreference.com
Constants (since C++20)
Defined in header
<numbers> | |||
Defined in namespace
std::numbers | |||
e_v |
the mathematical constant e (variable template) | ||
log2e_v |
log 2e (variable template) | ||
log10e_v |
log 10e (variable template) | ||
pi_v |
the mathematical constant π (variable template) | ||
inv_pi_v |
(variable template) | ||
inv_sqrtpi_v |
(variable template) | ||
ln2_v |
ln 2 (variable template) | ||
ln10_v |
ln 10 (variable template) | ||
sqrt2_v |
√2 (variable template) | ||
sqrt3_v |
√3 (variable template) | ||
inv_sqrt3_v |
(variable template) | ||
egamma_v |
the Euler–Mascheroni constant γ (variable template) | ||
phi_v |
the golden ratio Φ (
(variable template) | ||
inline constexpr double e |
e_v<double> (constant) | ||
inline constexpr double log2e |
log2e_v<double> (constant) | ||
inline constexpr double log10e |
log10e_v<double> (constant) | ||
inline constexpr double pi |
pi_v<double> (constant) | ||
inline constexpr double inv_pi |
inv_pi_v<double> (constant) | ||
inline constexpr double inv_sqrtpi |
inv_sqrtpi_v<double> (constant) | ||
inline constexpr double ln2 |
ln2_v<double> (constant) | ||
inline constexpr double ln10 |
ln10_v<double> (constant) | ||
inline constexpr double sqrt2 |
sqrt2_v<double> (constant) | ||
inline constexpr double sqrt3 |
sqrt3_v<double> (constant) | ||
inline constexpr double inv_sqrt3 |
inv_sqrt3_v<double> (constant) | ||
inline constexpr double egamma |
egamma_v<double> (constant) | ||
inline constexpr double phi |
phi_v<double> (constant) |
Notes
A program that instantiates a primary template of a mathematical constant variable template is ill-formed.
The standard library specializes mathematical constant variable templates for all floating-point types (i.e. float, double and long double).
A program may partially or explicitly specialize a mathematical constant variable template provided that the specialization depends on a program-defined type.
Feature-test macro | Value | Std | Comment |
---|---|---|---|
__cpp_lib_math_constants |
201907L | (c++20) | Mathematical constants |
Example
Run this code
#include <cmath> #include <iomanip> #include <iostream> #include <limits> #include <numbers> #include <string_view> auto egamma_aprox(const unsigned iterations) { long double s = 0; for (unsigned m = 2; m < iterations; ++m) { if (const long double t = std::riemann_zetal(m) / m; m % 2) s -= t; else s += t; } return s; }; int main() { using namespace std; using namespace std::numbers; const auto x = sqrt(inv_pi)/inv_sqrtpi + ceil(exp2(log2e)) + sqrt3*inv_sqrt3 + exp(0), v = (phi*phi - phi) + 1/log2(sqrt2) + log10e*ln10 + pow(e, ln2) - cos(pi); std::cout << "The answer is " << x*v << '\n'; using namespace std::string_view_literals; constexpr auto γ = "0.577215664901532860606512090082402"sv; std::cout << "γ as 10⁶ sums of ±ζ(m)/m = " << egamma_aprox(1'000'000) << '\n' << "γ as egamma_v<float> = " << std::setprecision(std::numeric_limits<float>::digits10 + 1) << egamma_v<float> << '\n' << "γ as egamma_v<double> = " << std::setprecision(std::numeric_limits<double>::digits10 + 1) << egamma_v<double> << '\n' << "γ as egamma_v<long double> = " << std::setprecision(std::numeric_limits<long double>::digits10 + 1) << egamma_v<long double> << '\n' << "γ with " << γ.length() - 1 << " digits precision = " << γ << '\n' ; }
Possible output:
The answer is 42 γ as 10⁶ sums of ±ζ(m)/m = 0.577215 γ as egamma_v<float> = 0.5772157 γ as egamma_v<double> = 0.5772156649015329 γ as egamma_v<long double> = 0.5772156649015328606 γ with 34 digits precision = 0.577215664901532860606512090082402
See also
(C++11) |
represents exact rational fraction (class template) |