std::cos, std::cosf, std::cosl
Defined in header <cmath>
|
||
(1) | ||
float cos ( float num ); double cos ( double num ); |
(until C++23) | |
/* floating-point-type */ cos ( /* floating-point-type */ num ); |
(since C++23) (constexpr since C++26) |
|
float cosf( float num ); |
(2) | (since C++11) (constexpr since C++26) |
long double cosl( long double num ); |
(3) | (since C++11) (constexpr since C++26) |
Additional overloads (since C++11) |
||
Defined in header <cmath>
|
||
template< class Integer > double cos ( Integer num ); |
(A) | (constexpr since C++26) |
std::cos
for all cv-unqualified floating-point types as the type of the parameter. (since C++23)
A) Additional overloads are provided for all integer types, which are treated as double.
|
(since C++11) |
Parameters
num | - | floating-point or integer value representing angle in radians |
Return value
If no errors occur, the cosine of num (cos(num)) in the range [
-1.0,
+1.0]
, is returned.
The result may have little or no significance if the magnitude of num is large. |
(until C++11) |
If a domain error occurs, an implementation-defined value is returned (NaN where supported).
If a range error occurs due to underflow, the correct result (after rounding) is returned.
Error handling
Errors are reported as specified in math_errhandling.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- if the argument is ±0, the result is 1.0
- if the argument is ±∞, NaN is returned and FE_INVALID is raised
- if the argument is NaN, NaN is returned
Notes
The case where the argument is infinite is not specified to be a domain error in C, but it is defined as a domain error in POSIX.
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num of integer type, std::cos(num) has the same effect as std::cos(static_cast<double>(num)).
Example
#include <cerrno> #include <cfenv> #include <cmath> #include <iomanip> #include <iostream> #include <numbers> // #pragma STDC FENV_ACCESS ON constexpr double pi = std::numbers::pi; // or std::acos(-1) before C++20 constexpr double your_cos(double x) { double cos {1}, pow {x}; for (auto fac {1ull}, n {1ull}; n != 19; fac *= ++n, pow *= x) if ((n & 1) == 0) cos += (n & 2 ? -pow : pow) / fac; return cos; } int main() { std::cout << std::setprecision(10) << std::showpos << "Typical usage:\n" << "std::cos(pi/3) = " << std::cos(pi / 3) << '\n' << "your cos(pi/3) = " << your_cos(pi / 3) << '\n' << "std::cos(pi/2) = " << std::cos(pi / 2) << '\n' << "your cos(pi/2) = " << your_cos(pi / 2) << '\n' << "std::cos(-3*pi/4) = " << std::cos(-3 * pi / 4) << '\n' << "your cos(-3*pi/4) = " << your_cos(-3 * pi / 4) << '\n' << "Special values:\n" << "std::cos(+0) = " << std::cos(0.0) << '\n' << "std::cos(-0) = " << std::cos(-0.0) << '\n'; // error handling std::feclearexcept(FE_ALL_EXCEPT); std::cout << "cos(INFINITY) = " << std::cos(INFINITY) << '\n'; if (std::fetestexcept(FE_INVALID)) std::cout << " FE_INVALID raised\n"; }
Possible output:
Typical usage: std::cos(pi/3) = +0.5 your cos(pi/3) = +0.5 std::cos(pi/2) = +6.123233996e-17 your cos(pi/2) = -3.373452105e-15 std::cos(-3*pi/4) = -0.7071067812 your cos(-3*pi/4) = -0.7071067812 Special values: std::cos(+0) = +1 std::cos(-0) = +1 cos(INFINITY) = -nan FE_INVALID raised
See also
(C++11)(C++11) |
computes sine (sin(x)) (function) |
(C++11)(C++11) |
computes tangent (tan(x)) (function) |
(C++11)(C++11) |
computes arc cosine (arccos(x)) (function) |
computes cosine of a complex number (cos(z)) (function template) | |
applies the function std::cos to each element of valarray (function template) |