std::ranges::views::cartesian_product, std::ranges::cartesian_product_view

From cppreference.com
< cpp‎ | ranges
 
 
Ranges library
Range access
Range conversions
(C++23)
Range primitives



Dangling iterator handling
Range concepts
Views

Range factories
Range adaptors
cartesian_product_viewviews::cartesian_product
(C++23)(C++23)
Range generators
Range adaptor objects
Range adaptor closure objects
Helper items
(until C++23)(C++23)


 
 
Defined in header <ranges>
template< ranges::input_range First, ranges::forward_range... Vs >

    requires (ranges::view<First> && ... && ranges::view<Vs>)
class cartesian_product_view :

    public ranges::view_interface<cartesian_product_view<First, Vs...>>
(1) (since C++23)
namespace views {

    inline constexpr /*unspecified*/ cartesian_product = /*unspecified*/;

}
(2) (since C++23)
Call signature
template< ranges::viewable_range... Rs >

    requires /* see below */

constexpr auto cartesian_product( Rs&&... rs );
(since C++23)
Helper concepts
template< bool Const, class First, class... Vs >

concept __cartesian_product_is_random_access =
    (ranges::random_access_range<__maybe_const<Const, First>> && ... &&
        (ranges::random_access_range<__maybe_const<Const, Vs>> &&

            ranges::sized_range<__maybe_const<Const, Vs>>));
(3) (exposition only*)
template< class R >

concept __cartesian_product_common_arg =
    ranges::common_range<R> ||

        (ranges::sized_range<R> && ranges::random_access_range<R>);
(4) (exposition only*)
template< bool Const, class First, class... Vs >

concept __cartesian_product_is_bidirectional =
    (ranges::bidirectional_range<__maybe_const<Const, First>> && ... &&
        (ranges::bidirectional_range<__maybe_const<Const, Vs>> &&

            __cartesian_product_common_arg<__maybe_const<Const, Vs>>));
(5) (exposition only*)
template< class First, class... Vs >

concept __cartesian_product_is_common =

    __cartesian_product_common_arg<First>;
(6) (exposition only*)
template< class... Vs >

concept __cartesian_product_is_sized =

    (ranges::sized_range<Vs> && ...);
(7) (exposition only*)
template< bool Const, template<class> class FirstSent, class First, class... Vs >

concept __cartesian_is_sized_sentinel =
    (ranges::sized_sentinel_for<FirstSent<__maybe_const<Const, First>>,
        ranges::iterator_t<__maybe_const<Const, First>>> && ... &&
            (ranges::sized_range<__maybe_const<Const, Vs>> &&
                ranges::sized_sentinel_for<iterator_t<__maybe_const<Const, Vs>>,

                    ranges::iterator_t<__maybe_const<Const, Vs>>>));
(8) (exposition only*)
Helper function templates
template< __cartesian_product_common_arg R >

constexpr auto __cartesian_common_arg_end( R& r ) {
    if constexpr (ranges::common_range<R>)
        return ranges::end(r);
    else
        return ranges::begin(r) + ranges::distance(r);

}
(9) (exposition only*)
1) cartesian_product_view is a range adaptor that takes n views, where n > 0, and produces a view of tuples calculated by the n-ary cartesian product of the provided ranges. The size of produced view is a multiple of sizes of provided ranges, while each element is a tuple (of references) of the size n.
2) views::cartesian_product is a customization point object.
3) Determines if cartesian_product is a random access range (see also random_access_range).
4) Determines if cartesian_product is a common range (see also common_range).
5) Determines if cartesian_product is a bidirectional range (see also bidirectional_range).
6) Determines if cartesian_product satisfies the helper concept __cartesian_product_is_common (see also common_range).
7) Determines if cartesian_product is a sized range (see also sized_range).
8) Determines if cartesian_product uses sized sentinel.
9) Returns the end of the produced view. Participates in overload resolution only if cartesian_product satisfies the helper concept __cartesian_product_common_arg.

The First range passed to cartesian_product_view is treated specially, since it is only passed through a single time. As a result, several constrains are relaxed on it:

Customization point objects

The name views::cartesian_product denotes a customization point object, which is a const function object of a literal semiregular class type. For exposition purposes, the cv-unqualified version of its type is denoted as __cartesian_product_fn.

All instances of __cartesian_product_fn are equal. The effects of invoking different instances of type __cartesian_product_fn on the same arguments are equivalent, regardless of whether the expression denoting the instance is an lvalue or rvalue, and is const-qualified or not (however, a volatile-qualified instance is not required to be invocable). Thus, views::cartesian_product can be copied freely and its copies can be used interchangeably.

Given a set of types Args..., if std::declval<Args>()... meet the requirements for arguments to views::cartesian_product above, __cartesian_product_fn models

Otherwise, no function call operator of __cartesian_product_fn participates in overload resolution.

Data members

Typical implementations of cartesian_product_view hold only one non-static data member (shown here as base_ for exposition only) of type std::tuple<First, Vs...> that holds all adapted view objects.

Member functions

constructs a cartesian_product_view
(public member function)
(C++23)
returns an iterator to the beginning
(public member function)
(C++23)
returns an iterator or a sentinel to the end
(public member function)
(C++23)
returns the number of elements. Provided only if the underlying (adapted) range satisfies sized_range.
(public member function)
Inherited from std::ranges::view_interface
(C++20)
returns whether the derived view is empty. Provided if it satisfies sized_range or forward_range.
(public member function of std::ranges::view_interface<D>)
(C++23)
returns a constant iterator to the beginning of the range.
(public member function of std::ranges::view_interface<D>)
(C++23)
returns a sentinel for the constant iterator of the range.
(public member function of std::ranges::view_interface<D>)
returns whether the derived view is not empty. Provided if ranges::empty is applicable to it.
(public member function of std::ranges::view_interface<D>)
(C++20)
returns the first element in the derived view. Provided if it satisfies forward_range.
(public member function of std::ranges::view_interface<D>)
(C++20)
returns the last element in the derived view. Provided if it satisfies bidirectional_range and common_range.
(public member function of std::ranges::view_interface<D>)
returns the nth element in the derived view. Provided if it satisfies random_access_range.
(public member function of std::ranges::view_interface<D>)

Deduction guides

Nested classes

(C++23)
the iterator type
(exposition-only member class template*)

Notes

Feature-test macro Value Std Comment
__cpp_lib_ranges_cartesian_product 202207L (C++23) std::ranges::cartesian_product_view

Example

#include <array>
#include <iostream>
#include <list>
#include <ranges>
#include <string>
#include <vector>
 
void print(std::tuple<char const&, int const&, std::string const&> t, int pos)
{
    const auto& [a, b, c] = t;
    std::cout << '(' << a << ' ' << b << ' ' << c << ')' << (pos % 4 ? " " : "\n");
}
 
int main()
{
    const auto x = std::array{'A', 'B'};
    const auto y = std::vector{1, 2, 3};
    const auto z = std::list<std::string>{"α", "β", "γ", "δ"};
 
    for (int i{1}; auto const& tuple : std::views::cartesian_product(x, y, z))
        print(tuple, i++);
}

Output:

(A 1 α) (A 1 β) (A 1 γ) (A 1 δ)
(A 2 α) (A 2 β) (A 2 γ) (A 2 δ)
(A 3 α) (A 3 β) (A 3 γ) (A 3 δ)
(B 1 α) (B 1 β) (B 1 γ) (B 1 δ)
(B 2 α) (B 2 β) (B 2 γ) (B 2 δ)
(B 3 α) (B 3 β) (B 3 γ) (B 3 δ)

References

  • C++23 standard (ISO/IEC 14882:2023):
  • 26.7.31 Cartesian product view [range.stride]

See also

a view consisting of tuples of references to corresponding elements of the adapted views
(class template) (customization point object)