std::weak_order
Defined in header <compare>
|
||
inline namespace /* unspecified */ { inline constexpr /* unspecified */ weak_order = /* unspecified */; |
(since C++20) | |
Call signature |
||
template< class T, class U > requires /* see below */ |
||
Compares two values using 3-way comparison and produces a result of type std::weak_ordering
.
Let t and u be expressions and T
and U
denote decltype((t)) and decltype((u)) respectively, std::weak_order(t, u) is expression-equivalent to:
- If std::is_same_v<std::decay_t<T>, std::decay_t<U>> is true:
- std::weak_ordering(weak_order(t, u)), if it is a well-formed expression with overload resolution performed in a context that does not include a declaration of
std::weak_order
, - otherwise, if
T
is a floating-point type:- if std::numeric_limits<T>::is_iec559 is true, performs the weak ordering comparison of floating-point values (see below) and returns that result as a value of type
std::weak_ordering
, - otherwise, yields a value of type
std::weak_ordering
that is consistent with the ordering observed byT
's comparison operators,
- if std::numeric_limits<T>::is_iec559 is true, performs the weak ordering comparison of floating-point values (see below) and returns that result as a value of type
- otherwise, std::weak_ordering(std::compare_three_way()(t, u)), if it is well-formed,
- otherwise, std::weak_ordering(std::strong_order(t, u)), if it is well-formed.
- std::weak_ordering(weak_order(t, u)), if it is a well-formed expression with overload resolution performed in a context that does not include a declaration of
- In all other cases, the expression is ill-formed, which can result in substitution failure when it appears in the immediate context of a template instantiation.
Customization point objects
The name std::weak_order
denotes a customization point object, which is a const function object of a literal semiregular
class type. For exposition purposes, the cv-unqualified version of its type is denoted as __weak_order_fn
.
All instances of __weak_order_fn
are equal. The effects of invoking different instances of type __weak_order_fn
on the same arguments are equivalent, regardless of whether the expression denoting the instance is an lvalue or rvalue, and is const-qualified or not (however, a volatile-qualified instance is not required to be invocable). Thus, std::weak_order
can be copied freely and its copies can be used interchangeably.
Given a set of types Args...
, if std::declval<Args>()... meet the requirements for arguments to std::weak_order
above, __weak_order_fn
models
- std::invocable<__weak_order_fn, Args...>,
- std::invocable<const __weak_order_fn, Args...>,
- std::invocable<__weak_order_fn&, Args...>, and
- std::invocable<const __weak_order_fn&, Args...>.
Otherwise, no function call operator of __weak_order_fn
participates in overload resolution.
Strict weak order of IEEE floating-point types
Let x and y be values of same IEEE floating-point type, and weak_order_less(x, y) be the boolean result indicating if x precedes y in the strict weak order defined by the C++ standard.
- If neither x nor y is NaN, then weak_order_less(x, y) == true if and only if x < y, i.e. all representations of equal floating-point value are equivalent;
- If x is negative NaN and y is not negative NaN, then weak_order_less(x, y) == true;
- If x is not positive NaN and y is positive NaN, then weak_order_less(x, y) == true;
- If both x and y are NaNs with the same sign, then (weak_order_less(x, y) || weak_order_less(y, x)) == false, i.e. all NaNs with the same sign are equivalent.
Example
This section is incomplete Reason: no example |
See also
(C++20) |
the result type of 3-way comparison that supports all 6 operators and is not substitutable (class) |
(C++20) |
performs 3-way comparison and produces a result of type std::strong_ordering (customization point object) |
(C++20) |
performs 3-way comparison and produces a result of type std::partial_ordering (customization point object) |
(C++20) |
performs 3-way comparison and produces a result of type std::weak_ordering , even if operator<=> is unavailable (customization point object) |