std::exchange
From cppreference.com
                    
                                        
                    
                    
                                                            
                    |   Defined in header  <utility>
  | 
||
|   template< class T, class U = T > T exchange( T& obj, U&& new_value );  | 
 (since C++14)  (until C++20)  | 
|
|   template< class T, class U = T > constexpr T exchange( T& obj, U&& new_value );  | 
 (since C++20)  (until C++23)  | 
|
|   template< class T, class U = T > constexpr T exchange( T& obj, U&& new_value ) noexcept(/* see below */);  | 
(since C++23) | |
Replaces the value of obj with new_value and returns the old value of obj.
Parameters
| obj | - | object whose value to replace | 
| new_value | - |  the value to assign to obj
 | 
| Type requirements | ||
 -T must meet the requirements of MoveConstructible. Also, it must be possible to move-assign objects of type U to objects of type T.
 | ||
Return value
The old value of obj.
Exceptions
| 
 (none)  | 
(until C++23) | 
| 
 noexcept specification:  
 
noexcept(     std::is_nothrow_move_constructible_v<T> &&  | 
(since C++23) | 
Possible implementation
template<class T, class U = T> constexpr // since C++20 T exchange(T& obj, U&& new_value) noexcept( // since C++23 std::is_nothrow_move_constructible<T>::value && std::is_nothrow_assignable<T&, U>::value ) { T old_value = std::move(obj); obj = std::forward<U>(new_value); return old_value; }  | 
Notes
The std::exchange can be used when implementing move assignment operators and move constructors:
struct S { int n; S(S&& other) noexcept : n{std::exchange(other.n, 0)} {} S& operator=(S&& other) noexcept { if (this != &other) n = std::exchange(other.n, 0); // move n, while leaving zero in other.n return *this; } };
| Feature-test macro | Value | Std | Comment | 
|---|---|---|---|
__cpp_lib_exchange_function | 
201304L | (C++14) | std::exchange
 | 
Example
Run this code
#include <iostream> #include <iterator> #include <utility> #include <vector> class stream { public: using flags_type = int; public: flags_type flags() const { return flags_; } // Replaces flags_ by newf, and returns the old value. flags_type flags(flags_type newf) { return std::exchange(flags_, newf); } private: flags_type flags_ = 0; }; void f() { std::cout << "f()"; } int main() { stream s; std::cout << s.flags() << '\n'; std::cout << s.flags(12) << '\n'; std::cout << s.flags() << "\n\n"; std::vector<int> v; // Since the second template parameter has a default value, it is possible // to use a braced-init-list as second argument. The expression below // is equivalent to std::exchange(v, std::vector<int>{1, 2, 3, 4}); std::exchange(v, {1, 2, 3, 4}); std::copy(begin(v), end(v), std::ostream_iterator<int>(std::cout, ", ")); std::cout << "\n\n"; void (*fun)(); // the default value of template parameter also makes possible to use a // normal function as second argument. The expression below is equivalent to // std::exchange(fun, static_cast<void(*)()>(f)) std::exchange(fun, f); fun(); std::cout << "\n\nFibonacci sequence: "; for (int a{0}, b{1}; a < 100; a = std::exchange(b, a + b)) std::cout << a << ", "; std::cout << "...\n"; }
Output:
0 0 12 1, 2, 3, 4, f() Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
See also
|    swaps the values of two objects   (function template)  | |
|    (C++11)(C++11)  | 
   atomically replaces the value of the atomic object with non-atomic argument and returns the old value of the atomic   (function template)  |