std::apply
Defined in header <tuple>
|
||
template< class F, class Tuple > constexpr decltype(auto) apply( F&& f, Tuple&& t ); |
(since C++17) (until C++23) |
|
template< class F, tuple-like Tuple > constexpr decltype(auto) apply( F&& f, Tuple&& t ) noexcept(/* see below */); |
(since C++23) | |
Invoke the Callable object f with the elements of t as arguments.
Given the exposition-only function apply-impl
defined as follows:
template<class F,
tuple-like
Tuple, std::size_t... I> // no constraint on Tuple before C++23
constexpr decltype(auto)
apply-impl
(F&& f, Tuple&& t, std::index_sequence<I...>) // exposition only
{
return
INVOKE(std::forward<F>(f), std::get<I>(std::forward<Tuple>(t))...);
}
The effect is equivalent to
return
apply-impl
(std::forward<F>(f), std::forward<Tuple>(t),
std::make_index_sequence<
std::tuple_size_v<std::decay_t<Tuple>>>{});
.
Parameters
f | - | Callable object to be invoked |
t | - | tuple whose elements to be used as arguments to f |
Return value
The value returned by f.
Exceptions
(none) |
(until C++23) |
noexcept specification:
noexcept( noexcept(std::invoke(std::forward<F>(f), where
|
(since C++23) |
Notes
|
(until C++23) |
|
(since C++23) |
Feature-test macro | Value | Std | Comment |
---|---|---|---|
__cpp_lib_apply |
201603L | (C++17) | std::apply
|
Example
#include <iostream> #include <tuple> #include <utility> int add(int first, int second) { return first + second; } template<typename T> T add_generic(T first, T second) { return first + second; } auto add_lambda = [](auto first, auto second) { return first + second; }; template<typename... Ts> std::ostream& operator<<(std::ostream& os, std::tuple<Ts...> const& theTuple) { std::apply ( [&os](Ts const&... tupleArgs) { os << '['; std::size_t n{0}; ((os << tupleArgs << (++n != sizeof...(Ts) ? ", " : "")), ...); os << ']'; }, theTuple ); return os; } int main() { // OK std::cout << std::apply(add, std::pair(1, 2)) << '\n'; // Error: can't deduce the function type // std::cout << std::apply(add_generic, std::make_pair(2.0f, 3.0f)) << '\n'; // OK std::cout << std::apply(add_lambda, std::pair(2.0f, 3.0f)) << '\n'; // advanced example std::tuple myTuple{25, "Hello", 9.31f, 'c'}; std::cout << myTuple << '\n'; }
Output:
3 5 [25, Hello, 9.31, c]
See also
(C++11) |
creates a tuple object of the type defined by the argument types (function template) |
(C++11) |
creates a tuple of forwarding references (function template) |
(C++17) |
construct an object with a tuple of arguments (function template) |
(C++17)(C++23) |
invokes any Callable object with given arguments and possibility to specify return type (since C++23) (function template) |