Standard library header <functional>

From cppreference.com
< cpp‎ | header
 
 
Standard library headers
Language support
Concepts
<concepts> (C++20)
Diagnostics
<system_error> (C++11)

Memory management
<memory_resource> (C++17)  
Metaprogramming
<type_traits> (C++11)
<ratio> (C++11)
General utilities
<utility>
<tuple> (C++11)
<optional> (C++17)
<variant> (C++17)
<any> (C++17)
<expected> (C++23)
<bitset>

<functional>
<typeindex> (C++11)
<execution> (C++17)

<charconv> (C++17)
<format> (C++20)
<bit> (C++20)

Strings
<cuchar> (C++11)

Containers
<flat_set> (C++23)
<span> (C++20)
<mdspan> (C++23)

Iterators
<iterator>
Ranges
<ranges> (C++20)
<generator> (C++23)
Algorithms
Numerics
<cfenv> (C++11)
<complex>
<numbers> (C++20)

Time
<chrono> (C++11)
Localization
<codecvt> (C++11/17*)
Input/output
<filesystem> (C++17)
<cstdio>
<cinttypes> (C++11)
<strstream> (C++98*)
Regular expressions
<regex> (C++11)
Concurrency support
<stop_token> (C++20)
<thread> (C++11)
<atomic> (C++11)
<stdatomic.h> (C++23)
<mutex> (C++11)
<shared_mutex> (C++14)
<condition_variable> (C++11)  
<semaphore> (C++20)
<latch> (C++20)
<barrier> (C++20)
<future> (C++11)

C compatibility
<cstdbool> (C++11/17/20*)  
<ccomplex> (C++11/17/20*)
<ctgmath> (C++11/17/20*)

<cstdalign> (C++11/17/20*)

<ciso646> (until C++20)

 

This header is part of the function objects library and provides the standard hash function.

Namespaces

placeholders (C++11) Provides placeholders for the unbound arguments in a std::bind expression

Classes

Wrappers
(C++11)
wraps callable object of any copy constructible type with specified function call signature
(class template)
wraps callable object of any type with specified function call signature
(class template)
refinement of std::move_only_function that wraps callable object of any copy constructible type
(class template)
non-owning reference to any callable object with specified function call signature
(class template)
(C++11)
creates a function object out of a pointer to a member
(function template)
CopyConstructible and CopyAssignable reference wrapper
(class template)
get the reference type wrapped in std::reference_wrapper
(class template)
Helper classes
the exception thrown when invoking an empty std::function
(class)
indicates that an object is std::bind expression or can be used as one
(class template)
indicates that an object is a standard placeholder or can be used as one
(class template)
Arithmetic operations
function object implementing x + y
(class template)
function object implementing x - y
(class template)
function object implementing x * y
(class template)
function object implementing x / y
(class template)
function object implementing x % y
(class template)
function object implementing -x
(class template)
Comparisons
function object implementing x == y
(class template)
function object implementing x != y
(class template)
function object implementing x > y
(class template)
function object implementing x < y
(class template)
function object implementing x >= y
(class template)
function object implementing x <= y
(class template)
Concept-constrained comparisons
function object implementing x == y
(class)
function object implementing x != y
(class)
function object implementing x > y
(class)
function object implementing x < y
(class)
function object implementing x >= y
(class)
function object implementing x <= y
(class)
function object implementing x <=> y
(class)
Logical operations
function object implementing x && y
(class template)
function object implementing x || y
(class template)
function object implementing !x
(class template)
Bitwise operations
function object implementing x & y
(class template)
function object implementing x | y
(class template)
function object implementing x ^ y
(class template)
(C++14)
function object implementing ~x
(class template)
Negators
(C++17)
creates a function object that returns the complement of the result of the function object it holds
(function template)
Identities
(C++20)
function object that returns its argument unchanged
(class)
Searchers
standard C++ library search algorithm implementation
(class template)
Boyer-Moore search algorithm implementation
(class template)
Boyer-Moore-Horspool search algorithm implementation
(class template)
Hashing
(C++11)
hash function object
(class template)
std::hash specializations for fundamental, enumeration, and pointer types
(class template specialization)

Constants

Defined in namespace std::placeholders
placeholders for the unbound arguments in a std::bind expression
(constant)

Functions

(C++20)(C++23)
bind a variable number of arguments, in order, to a function object
(function template)
(C++11)
binds one or more arguments to a function object
(function template)
(C++11)(C++11)
creates a std::reference_wrapper with a type deduced from its argument
(function template)
(C++17)(C++23)
invokes any Callable object with given arguments and possibility to specify return type (since C++23)
(function template)

Deprecated in C++11 and removed in C++17

Base
(deprecated in C++11)(removed in C++17)
adaptor-compatible unary function base class
(class template)
(deprecated in C++11)(removed in C++17)
adaptor-compatible binary function base class
(class template)
Binders
(deprecated in C++11)(removed in C++17)
function object holding a binary function and one of its arguments
(class template)
(deprecated in C++11)(removed in C++17)
binds one argument to a binary function
(function template)
Function adaptors
(deprecated in C++11)(removed in C++17)
adaptor-compatible wrapper for a pointer to unary function
(class template)
(deprecated in C++11)(removed in C++17)
adaptor-compatible wrapper for a pointer to binary function
(class template)
(deprecated in C++11)(removed in C++17)
creates an adaptor-compatible function object wrapper from a pointer to function
(function template)
(deprecated in C++11)(removed in C++17)
wrapper for a pointer to nullary or unary member function, callable with a pointer to object
(class template)
(deprecated in C++11)(removed in C++17)
creates a wrapper from a pointer to member function, callable with a pointer to object
(function template)
wrapper for a pointer to nullary or unary member function, callable with a reference to object
(class template)
(deprecated in C++11)(removed in C++17)
creates a wrapper from a pointer to member function, callable with a reference to object
(function template)

Deprecated in C++17 and removed in C++20

Negators
(deprecated in C++17)(removed in C++20)
wrapper function object returning the complement of the unary predicate it holds
(class template)
(deprecated in C++17)(removed in C++20)
wrapper function object returning the complement of the binary predicate it holds
(class template)
(deprecated in C++17)(removed in C++20)
constructs custom std::unary_negate object
(function template)
(deprecated in C++17)(removed in C++20)
constructs custom std::binary_negate object
(function template)

Synopsis

namespace std {
  // invoke
  template<class F, class... Args>
    constexpr invoke_result_t<F, Args...> invoke(F&& f, Args&&... args)
      noexcept(is_nothrow_invocable_v<F, Args...>);
  template<class R, class F, class... Args>
    constexpr R invoke_r(F&& f, Args&&... args)
      noexcept(is_nothrow_invocable_r_v<R, F, Args...>);
 
  // reference_wrapper
  template<class T> class reference_wrapper;
 
  template<class T> constexpr reference_wrapper<T> ref(T&) noexcept;
  template<class T> constexpr reference_wrapper<const T> cref(const T&) noexcept;
  template<class T> void ref(const T&&) = delete;
  template<class T> void cref(const T&&) = delete;
 
  template<class T>
    constexpr reference_wrapper<T> ref(reference_wrapper<T>) noexcept;
  template<class T>
    constexpr reference_wrapper<const T> cref(reference_wrapper<T>) noexcept;
 
  template<class T> struct unwrap_reference;
  template<class T> using unwrap_reference_t = typename unwrap_reference<T>::type;
  template<class T> struct unwrap_ref_decay;
  template<class T> using unwrap_ref_decay_t = typename unwrap_ref_decay<T>::type;
 
  // arithmetic operations
  template<class T = void> struct plus;
  template<class T = void> struct minus;
  template<class T = void> struct multiplies;
  template<class T = void> struct divides;
  template<class T = void> struct modulus;
  template<class T = void> struct negate;
  template<> struct plus<void>;
  template<> struct minus<void>;
  template<> struct multiplies<void>;
  template<> struct divides<void>;
  template<> struct modulus<void>;
  template<> struct negate<void>;
 
  // comparisons
  template<class T = void> struct equal_to;
  template<class T = void> struct not_equal_to;
  template<class T = void> struct greater;
  template<class T = void> struct less;
  template<class T = void> struct greater_equal;
  template<class T = void> struct less_equal;
  template<> struct equal_to<void>;
  template<> struct not_equal_to<void>;
  template<> struct greater<void>;
  template<> struct less<void>;
  template<> struct greater_equal<void>;
  template<> struct less_equal<void>;
 
  // logical operations
  template<class T = void> struct logical_and;
  template<class T = void> struct logical_or;
  template<class T = void> struct logical_not;
  template<> struct logical_and<void>;
  template<> struct logical_or<void>;
  template<> struct logical_not<void>;
 
  // bitwise operations
  template<class T = void> struct bit_and;
  template<class T = void> struct bit_or;
  template<class T = void> struct bit_xor;
  template<class T = void> struct bit_not;
  template<> struct bit_and<void>;
  template<> struct bit_or<void>;
  template<> struct bit_xor<void>;
  template<> struct bit_not<void>;
 
  // identity
  struct identity;
 
  // function template not_fn
  template<class F> constexpr /* unspecified */ not_fn(F&& f);
 
  // function templates bind_front and bind_back
  template<class F, class... Args> constexpr /* unspecified */ bind_front(F&&, Args&&...);
  template<class F, class... Args> constexpr /* unspecified */ bind_back(F&&, Args&&...);
 
  // bind
  template<class T> struct is_bind_expression;
  template<class T> struct is_placeholder;
 
  template<class F, class... BoundArgs>
    constexpr /* unspecified */ bind(F&&, BoundArgs&&...);
  template<class R, class F, class... BoundArgs>
    constexpr /* unspecified */ bind(F&&, BoundArgs&&...);
 
  namespace placeholders {
    // M is the implementation-defined number of placeholders
    /* see description */ _1;
    /* see description */ _2;
               .
               .
               .
    /* see description */ _M;
  }
 
  // member function adaptors
  template<class R, class T>
    constexpr /* unspecified */ mem_fn(R T::*) noexcept;
 
  // polymorphic function wrappers
  class bad_function_call;
 
  template<class> class function; // not defined
  template<class R, class... ArgTypes> class function<R(ArgTypes...)>;
 
  template<class R, class... ArgTypes>
    void swap(function<R(ArgTypes...)>&, function<R(ArgTypes...)>&) noexcept;
 
  template<class R, class... ArgTypes>
    bool operator==(const function<R(ArgTypes...)>&, nullptr_t) noexcept;
 
  template<class...> class move_only_function; // not defined
 
  template<class R, class... ArgTypes>
    class move_only_function<R(ArgTypes...) /*cv ref*/ noexcept(/*noex*/)>;
 
  // searchers
  template<class ForwardIter, class BinaryPredicate = equal_to<>>
    class default_searcher;
 
  template<class RandomAccessIter,
           class Hash = hash<typename iterator_traits<RandomAccessIter>::value_type>,
           class BinaryPredicate = equal_to<>>
    class boyer_moore_searcher;
 
  template<class RandomAccessIter,
           class Hash = hash<typename iterator_traits<RandomAccessIter>::value_type>,
           class BinaryPredicate = equal_to<>>
    class boyer_moore_horspool_searcher;
 
  // hash function primary template
  template<class T>
    struct hash;
 
  // function object binders
  template<class T>
    inline constexpr bool is_bind_expression_v = is_bind_expression<T>::value;
  template<class T>
    inline constexpr int is_placeholder_v = is_placeholder<T>::value;
 
  namespace ranges {
    // concept-constrained comparisons
    struct equal_to;
    struct not_equal_to;
    struct greater;
    struct less;
    struct greater_equal;
    struct less_equal;
  }
}

Class template std::reference_wrapper

namespace std {
  template<class T> class reference_wrapper {
  public:
    // types
    using type = T;
 
    // construct/copy/destroy
    template<class U>
      constexpr reference_wrapper(U&&) noexcept(see below);
    constexpr reference_wrapper(const reference_wrapper& x) noexcept;
 
    // assignment
    constexpr reference_wrapper& operator=(const reference_wrapper& x) noexcept;
 
    // access
    constexpr operator T& () const noexcept;
    constexpr T& get() const noexcept;
 
    // invocation
    template<class... ArgTypes>
      constexpr invoke_result_t<T&, ArgTypes...> operator()(ArgTypes&&...) const;
  };
  template<class T>
    reference_wrapper(T&) -> reference_wrapper<T>;
}

Class template std::unwrap_reference

namespace std {
  template<class T>
    struct unwrap_reference;
}

Class template std::unwrap_ref_decay

namespace std {
  template<class T>
    struct unwrap_ref_decay;
}

Class template std::plus

namespace std {
  template<class T = void> struct plus {
    constexpr T operator()(const T& x, const T& y) const;
  };
 
  template<> struct plus<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) + std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::minus

namespace std {
  template<class T = void> struct minus {
    constexpr T operator()(const T& x, const T& y) const;
  };
 
  template<> struct minus<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) - std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::multiplies

namespace std {
  template<class T = void> struct multiplies {
    constexpr T operator()(const T& x, const T& y) const;
  };
 
  template<> struct multiplies<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) * std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::divides

namespace std {
  template<class T = void> struct divides {
    constexpr T operator()(const T& x, const T& y) const;
  };
 
  template<> struct divides<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) / std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::modulus

namespace std {
  template<class T = void> struct modulus {
    constexpr T operator()(const T& x, const T& y) const;
  };
 
  template<> struct modulus<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) % std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::negate

namespace std {
  template<class T = void> struct negate {
    constexpr T operator()(const T& x) const;
  };
 
  template<> struct negate<void> {
    template<class T> constexpr auto operator()(T&& t) const
      -> decltype(-std::forward<T>(t));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::equal_to

namespace std {
  template<class T = void> struct equal_to {
    constexpr bool operator()(const T& x, const T& y) const;
  };
 
  template<> struct equal_to<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) == std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::not_equal_to

namespace std {
  template<class T = void> struct not_equal_to {
    constexpr bool operator()(const T& x, const T& y) const;
  };
 
  template<> struct not_equal_to<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) != std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::greater

namespace std {
  template<class T = void> struct greater {
    constexpr bool operator()(const T& x, const T& y) const;
  };
 
  template<> struct greater<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) > std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::less

namespace std {
  template<class T = void> struct less {
    constexpr bool operator()(const T& x, const T& y) const;
  };
 
  template<> struct less<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) < std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::greater_equal

namespace std {
  template<class T = void> struct greater_equal {
    constexpr bool operator()(const T& x, const T& y) const;
  };
 
  template<> struct greater_equal<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) >= std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::less_equal

namespace std {
  template<class T = void> struct less_equal {
    constexpr bool operator()(const T& x, const T& y) const;
  };
 
  template<> struct less_equal<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) <= std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class std::ranges::equal_to

namespace std::ranges {
  struct equal_to {
    template<class T, class U>
    constexpr bool operator()(T&& t, U&& u) const;
 
    using is_transparent = /* unspecified */;
  };
}

Class std::ranges::not_equal_to

namespace std::ranges {
  struct not_equal_to {
    template<class T, class U>
    constexpr bool operator()(T&& t, U&& u) const;
 
    using is_transparent = /* unspecified */;
  };
}

Class std::ranges::greater

namespace std::ranges {
  struct greater {
    template<class T, class U>
    constexpr bool operator()(T&& t, U&& u) const;
 
    using is_transparent = /* unspecified */;
  };
}

Class std::ranges::less

namespace std::ranges {
  struct less {
    template<class T, class U>
    constexpr bool operator()(T&& t, U&& u) const;
 
    using is_transparent = /* unspecified */;
  };
}

Class std::ranges::greater_equal

namespace std::ranges {
  struct greater_equal {
    template<class T, class U>
    constexpr bool operator()(T&& t, U&& u) const;
 
    using is_transparent = /* unspecified */;
  };
}

Class std::ranges::less_equal

namespace std::ranges {
  struct less_equal {
    template<class T, class U>
    constexpr bool operator()(T&& t, U&& u) const;
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::logical_and

namespace std {
  template<class T = void> struct logical_and {
    constexpr bool operator()(const T& x, const T& y) const;
  };
 
  template<> struct logical_and<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) && std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::logical_or

namespace std {
  template<class T = void> struct logical_or {
    constexpr bool operator()(const T& x, const T& y) const;
  };
 
  template<> struct logical_or<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) || std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::logical_not

namespace std {
  template<class T = void> struct logical_not {
    constexpr bool operator()(const T& x) const;
  };
 
  template<> struct logical_not<void> {
    template<class T> constexpr auto operator()(T&& t) const
      -> decltype(!std::forward<T>(t));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::bit_and

namespace std {
  template<class T = void> struct bit_and {
    constexpr T operator()(const T& x, const T& y) const;
  };
 
  template<> struct bit_and<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) & std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::bit_or

namespace std {
  template<class T = void> struct bit_or {
    constexpr T operator()(const T& x, const T& y) const;
  };
 
  template<> struct bit_or<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) | std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::bit_xor

namespace std {
  template<class T = void> struct bit_xor {
    constexpr T operator()(const T& x, const T& y) const;
  };
 
  template<> struct bit_xor<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) ^ std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::bit_not

namespace std {
  template<class T = void> struct bit_not {
    constexpr T operator()(const T& x) const;
  };
 
  template<> struct bit_not<void> {
    template<class T> constexpr auto operator()(T&& t) const
      -> decltype(~std::forward<T>(t));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::identity

namespace std {
  struct identity {
    template<class T>
      constexpr T&& operator()(T&& t) const noexcept;
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::is_bind_expression

namespace std {
  template<class T> struct is_bind_expression;
}

Class template std::is_placeholder

namespace std {
  template<class T> struct is_placeholder;
}

Class std::bad_function_call

namespace std {
  class bad_function_call : public exception {
  public:
    // see [exception] for the specification of the special member functions
    const char* what() const noexcept override;
  };
}

Class template std::function

namespace std {
  template<class> class function; // not defined
 
  template<class R, class... ArgTypes>
  class function<R(ArgTypes...)> {
  public:
    using result_type = R;
 
    // construct/copy/destroy
    function() noexcept;
    function(nullptr_t) noexcept;
    function(const function&);
    function(function&&) noexcept;
    template<class F> function(F);
 
    function& operator=(const function&);
    function& operator=(function&&);
    function& operator=(nullptr_t) noexcept;
    template<class F> function& operator=(F&&);
    template<class F> function& operator=(reference_wrapper<F>) noexcept;
 
    ~function();
 
    // function modifiers
    void swap(function&) noexcept;
 
    // function capacity
    explicit operator bool() const noexcept;
 
    // function invocation
    R operator()(ArgTypes...) const;
 
    // function target access
    const type_info& target_type() const noexcept;
    template<class T>       T* target() noexcept;
    template<class T> const T* target() const noexcept;
  };
 
  template<class R, class... ArgTypes>
    function(R(*)(ArgTypes...)) -> function<R(ArgTypes...)>;
 
  template<class F> function(F) -> function</* see description */>;
 
  // null pointer comparison functions
  template<class R, class... ArgTypes>
    bool operator==(const function<R(ArgTypes...)>&, nullptr_t) noexcept;
 
  // specialized algorithms
  template<class R, class... ArgTypes>
    void swap(function<R(ArgTypes...)>&, function<R(ArgTypes...)>&) noexcept;
}

Class template std::move_only_function

namespace std {
  template<class... S> class move_only_function; // not defined
 
  template<class R, class... ArgTypes>
  class move_only_function<R(ArgTypes...) /*cv-ref*/ noexcept(/*noex*/)> {
  public:
    using result_type = R;
 
    // construct/move/destroy
    move_only_function() noexcept;
    move_only_function(nullptr_t) noexcept;
    move_only_function(move_only_function&&) noexcept;
    template<class F> move_only_function(F&&);
 
    template<class T, class... Args>
      explicit move_only_function(in_place_type_t<T>, Args&&...);
    template<class T, class U, class... Args>
      explicit move_only_function(in_place_type_t<T>, initializer_list<U>, Args&&...);
 
    move_only_function& operator=(move_only_function&&);
    move_only_function& operator=(nullptr_t) noexcept;
    template<class F> move_only_function& operator=(F&&);
 
    ~move_only_function();
 
    // move_only_function invocation
    explicit operator bool() const noexcept;
 
    R operator()(ArgTypes...) /*cv-ref*/ noexcept(/*noex*/);
 
    // move_only_function utility
    void swap(move_only_function&) noexcept;
 
    friend void swap(move_only_function&, move_only_function&) noexcept;
 
    friend bool operator==(const move_only_function&, nullptr_t) noexcept;
 
  private:
    template<class VT>
      static constexpr bool /*is-callable-from*/ = /* see description */; // exposition-only
  };
}

Class template std::default_searcher

namespace std {
  template<class ForwardIter1, class BinaryPredicate = equal_to<>>
    class default_searcher {
    public:
      constexpr default_searcher(ForwardIter1 pat_first, ForwardIter1 pat_last,
                                 BinaryPredicate pred = BinaryPredicate());
 
      template<class ForwardIter2>
        constexpr pair<ForwardIter2, ForwardIter2>
          operator()(ForwardIter2 first, ForwardIter2 last) const;
 
    private:
      ForwardIter1 pat_first_;            // exposition only
      ForwardIter1 pat_last_;             // exposition only
      BinaryPredicate pred_;              // exposition only
  };
}

Class template std::boyer_moore_searcher

namespace std {
  template<class RandomAccessIter1,
           class Hash = hash<typename iterator_traits<RandomAccessIter1>::value_type>,
           class BinaryPredicate = equal_to<>>
    class boyer_moore_searcher {
    public:
      boyer_moore_searcher(RandomAccessIter1 pat_first,
                           RandomAccessIter1 pat_last,
                           Hash hf = Hash(),
                           BinaryPredicate pred = BinaryPredicate());
 
      template<class RandomAccessIter2>
        pair<RandomAccessIter2, RandomAccessIter2>
          operator()(RandomAccessIter2 first, RandomAccessIter2 last) const;
 
    private:
      RandomAccessIter1 pat_first_;       // exposition only
      RandomAccessIter1 pat_last_;        // exposition only
      Hash hash_;                         // exposition only
      BinaryPredicate pred_;              // exposition only
    };
}

Class template std::boyer_moore_horspool_searcher

namespace std {
  template<class RandomAccessIter1,
           class Hash = hash<typename iterator_traits<RandomAccessIter1>::value_type>,
           class BinaryPredicate = equal_to<>>
    class boyer_moore_horspool_searcher {
    public:
      boyer_moore_horspool_searcher(RandomAccessIter1 pat_first,
                                    RandomAccessIter1 pat_last,
                                    Hash hf = Hash(),
                                    BinaryPredicate pred = BinaryPredicate());
 
      template<class RandomAccessIter2>
        pair<RandomAccessIter2, RandomAccessIter2>
          operator()(RandomAccessIter2 first, RandomAccessIter2 last) const;
 
    private:
      RandomAccessIter1 pat_first_;       // exposition only
      RandomAccessIter1 pat_last_;        // exposition only
      Hash hash_;                         // exposition only
      BinaryPredicate pred_;              // exposition only
  };
}

See also

<string> Specializes std::hash for std::string, std::u16string, std::u32string, std::wstring
<string_view> Specializes std::hash for std::string_view, std::u16string_view, std::u32string_view, std::wstring_view
<system_error> Specializes std::hash for std::error_code
<bitset> Specializes std::hash for std::bitset
<memory> Specializes std::hash for std::unique_ptr, std::shared_ptr
<typeindex> Specializes std::hash for std::type_index
<vector> Specializes std::hash for std::vector<bool>
<thread> Specializes std::hash for std::thread::id
<optional> Specializes std::hash for std::optional
<variant> Specializes std::hash for std::variant
<coroutine> Specializes std::hash for std::coroutine_handle
<stacktrace> Specializes std::hash for std::stacktrace_entry and std::basic_stacktrace