Standard library header <functional>
From cppreference.com
This header is part of the function objects library and provides the standard hash function.
Namespaces | |
placeholders (C++11) | Provides placeholders for the unbound arguments in a std::bind expression |
Classes | |
Wrappers | |
(C++11) |
wraps callable object of any copy constructible type with specified function call signature (class template) |
(C++23) |
wraps callable object of any type with specified function call signature (class template) |
(C++26) |
refinement of std::move_only_function that wraps callable object of any copy constructible type (class template) |
(C++26) |
non-owning reference to any callable object with specified function call signature (class template) |
(C++11) |
creates a function object out of a pointer to a member (function template) |
(C++11) |
CopyConstructible and CopyAssignable reference wrapper (class template) |
(C++20)(C++20) |
get the reference type wrapped in std::reference_wrapper (class template) |
Helper classes | |
(C++11) |
the exception thrown when invoking an empty std::function (class) |
(C++11) |
indicates that an object is std::bind expression or can be used as one (class template) |
(C++11) |
indicates that an object is a standard placeholder or can be used as one (class template) |
Arithmetic operations | |
function object implementing x + y (class template) | |
function object implementing x - y (class template) | |
function object implementing x * y (class template) | |
function object implementing x / y (class template) | |
function object implementing x % y (class template) | |
function object implementing -x (class template) | |
Comparisons | |
function object implementing x == y (class template) | |
function object implementing x != y (class template) | |
function object implementing x > y (class template) | |
function object implementing x < y (class template) | |
function object implementing x >= y (class template) | |
function object implementing x <= y (class template) | |
Concept-constrained comparisons | |
(C++20) |
function object implementing x == y (class) |
(C++20) |
function object implementing x != y (class) |
(C++20) |
function object implementing x > y (class) |
(C++20) |
function object implementing x < y (class) |
(C++20) |
function object implementing x >= y (class) |
(C++20) |
function object implementing x <= y (class) |
(C++20) |
function object implementing x <=> y (class) |
Logical operations | |
function object implementing x && y (class template) | |
function object implementing x || y (class template) | |
function object implementing !x (class template) | |
Bitwise operations | |
function object implementing x & y (class template) | |
function object implementing x | y (class template) | |
function object implementing x ^ y (class template) | |
(C++14) |
function object implementing ~x (class template) |
Negators | |
(C++17) |
creates a function object that returns the complement of the result of the function object it holds (function template) |
Identities | |
(C++20) |
function object that returns its argument unchanged (class) |
Searchers | |
(C++17) |
standard C++ library search algorithm implementation (class template) |
(C++17) |
Boyer-Moore search algorithm implementation (class template) |
Boyer-Moore-Horspool search algorithm implementation (class template) | |
Hashing | |
(C++11) |
hash function object (class template) |
std::hash specializations for fundamental, enumeration, and pointer types (class template specialization) | |
Constants | |
Defined in namespace
std::placeholders | |
(C++11) |
placeholders for the unbound arguments in a std::bind expression (constant) |
Functions | |
(C++20)(C++23) |
bind a variable number of arguments, in order, to a function object (function template) |
(C++11) |
binds one or more arguments to a function object (function template) |
(C++11)(C++11) |
creates a std::reference_wrapper with a type deduced from its argument (function template) |
(C++17)(C++23) |
invokes any Callable object with given arguments and possibility to specify return type (since C++23) (function template) |
Deprecated in C++11 and removed in C++17
Base | |
(deprecated in C++11)(removed in C++17) |
adaptor-compatible unary function base class (class template) |
(deprecated in C++11)(removed in C++17) |
adaptor-compatible binary function base class (class template) |
Binders | |
(deprecated in C++11)(removed in C++17) |
function object holding a binary function and one of its arguments (class template) |
(deprecated in C++11)(removed in C++17) |
binds one argument to a binary function (function template) |
Function adaptors | |
(deprecated in C++11)(removed in C++17) |
adaptor-compatible wrapper for a pointer to unary function (class template) |
(deprecated in C++11)(removed in C++17) |
adaptor-compatible wrapper for a pointer to binary function (class template) |
(deprecated in C++11)(removed in C++17) |
creates an adaptor-compatible function object wrapper from a pointer to function (function template) |
(deprecated in C++11)(removed in C++17) |
wrapper for a pointer to nullary or unary member function, callable with a pointer to object (class template) |
(deprecated in C++11)(removed in C++17) |
creates a wrapper from a pointer to member function, callable with a pointer to object (function template) |
(deprecated in C++11)(removed in C++17) |
wrapper for a pointer to nullary or unary member function, callable with a reference to object (class template) |
(deprecated in C++11)(removed in C++17) |
creates a wrapper from a pointer to member function, callable with a reference to object (function template) |
Deprecated in C++17 and removed in C++20
Negators | |
(deprecated in C++17)(removed in C++20) |
wrapper function object returning the complement of the unary predicate it holds (class template) |
(deprecated in C++17)(removed in C++20) |
wrapper function object returning the complement of the binary predicate it holds (class template) |
(deprecated in C++17)(removed in C++20) |
constructs custom std::unary_negate object (function template) |
(deprecated in C++17)(removed in C++20) |
constructs custom std::binary_negate object (function template) |
Synopsis
namespace std { // invoke template<class F, class... Args> constexpr invoke_result_t<F, Args...> invoke(F&& f, Args&&... args) noexcept(is_nothrow_invocable_v<F, Args...>); template<class R, class F, class... Args> constexpr R invoke_r(F&& f, Args&&... args) noexcept(is_nothrow_invocable_r_v<R, F, Args...>); // reference_wrapper template<class T> class reference_wrapper; template<class T> constexpr reference_wrapper<T> ref(T&) noexcept; template<class T> constexpr reference_wrapper<const T> cref(const T&) noexcept; template<class T> void ref(const T&&) = delete; template<class T> void cref(const T&&) = delete; template<class T> constexpr reference_wrapper<T> ref(reference_wrapper<T>) noexcept; template<class T> constexpr reference_wrapper<const T> cref(reference_wrapper<T>) noexcept; template<class T> struct unwrap_reference; template<class T> using unwrap_reference_t = typename unwrap_reference<T>::type; template<class T> struct unwrap_ref_decay; template<class T> using unwrap_ref_decay_t = typename unwrap_ref_decay<T>::type; // arithmetic operations template<class T = void> struct plus; template<class T = void> struct minus; template<class T = void> struct multiplies; template<class T = void> struct divides; template<class T = void> struct modulus; template<class T = void> struct negate; template<> struct plus<void>; template<> struct minus<void>; template<> struct multiplies<void>; template<> struct divides<void>; template<> struct modulus<void>; template<> struct negate<void>; // comparisons template<class T = void> struct equal_to; template<class T = void> struct not_equal_to; template<class T = void> struct greater; template<class T = void> struct less; template<class T = void> struct greater_equal; template<class T = void> struct less_equal; template<> struct equal_to<void>; template<> struct not_equal_to<void>; template<> struct greater<void>; template<> struct less<void>; template<> struct greater_equal<void>; template<> struct less_equal<void>; // logical operations template<class T = void> struct logical_and; template<class T = void> struct logical_or; template<class T = void> struct logical_not; template<> struct logical_and<void>; template<> struct logical_or<void>; template<> struct logical_not<void>; // bitwise operations template<class T = void> struct bit_and; template<class T = void> struct bit_or; template<class T = void> struct bit_xor; template<class T = void> struct bit_not; template<> struct bit_and<void>; template<> struct bit_or<void>; template<> struct bit_xor<void>; template<> struct bit_not<void>; // identity struct identity; // function template not_fn template<class F> constexpr /* unspecified */ not_fn(F&& f); // function templates bind_front and bind_back template<class F, class... Args> constexpr /* unspecified */ bind_front(F&&, Args&&...); template<class F, class... Args> constexpr /* unspecified */ bind_back(F&&, Args&&...); // bind template<class T> struct is_bind_expression; template<class T> struct is_placeholder; template<class F, class... BoundArgs> constexpr /* unspecified */ bind(F&&, BoundArgs&&...); template<class R, class F, class... BoundArgs> constexpr /* unspecified */ bind(F&&, BoundArgs&&...); namespace placeholders { // M is the implementation-defined number of placeholders /* see description */ _1; /* see description */ _2; . . . /* see description */ _M; } // member function adaptors template<class R, class T> constexpr /* unspecified */ mem_fn(R T::*) noexcept; // polymorphic function wrappers class bad_function_call; template<class> class function; // not defined template<class R, class... ArgTypes> class function<R(ArgTypes...)>; template<class R, class... ArgTypes> void swap(function<R(ArgTypes...)>&, function<R(ArgTypes...)>&) noexcept; template<class R, class... ArgTypes> bool operator==(const function<R(ArgTypes...)>&, nullptr_t) noexcept; template<class...> class move_only_function; // not defined template<class R, class... ArgTypes> class move_only_function<R(ArgTypes...) /*cv ref*/ noexcept(/*noex*/)>; // searchers template<class ForwardIter, class BinaryPredicate = equal_to<>> class default_searcher; template<class RandomAccessIter, class Hash = hash<typename iterator_traits<RandomAccessIter>::value_type>, class BinaryPredicate = equal_to<>> class boyer_moore_searcher; template<class RandomAccessIter, class Hash = hash<typename iterator_traits<RandomAccessIter>::value_type>, class BinaryPredicate = equal_to<>> class boyer_moore_horspool_searcher; // hash function primary template template<class T> struct hash; // function object binders template<class T> inline constexpr bool is_bind_expression_v = is_bind_expression<T>::value; template<class T> inline constexpr int is_placeholder_v = is_placeholder<T>::value; namespace ranges { // concept-constrained comparisons struct equal_to; struct not_equal_to; struct greater; struct less; struct greater_equal; struct less_equal; } }
Class template std::reference_wrapper
namespace std { template<class T> class reference_wrapper { public: // types using type = T; // construct/copy/destroy template<class U> constexpr reference_wrapper(U&&) noexcept(see below); constexpr reference_wrapper(const reference_wrapper& x) noexcept; // assignment constexpr reference_wrapper& operator=(const reference_wrapper& x) noexcept; // access constexpr operator T& () const noexcept; constexpr T& get() const noexcept; // invocation template<class... ArgTypes> constexpr invoke_result_t<T&, ArgTypes...> operator()(ArgTypes&&...) const; }; template<class T> reference_wrapper(T&) -> reference_wrapper<T>; }
Class template std::unwrap_reference
namespace std { template<class T> struct unwrap_reference; }
Class template std::unwrap_ref_decay
namespace std { template<class T> struct unwrap_ref_decay; }
Class template std::plus
namespace std { template<class T = void> struct plus { constexpr T operator()(const T& x, const T& y) const; }; template<> struct plus<void> { template<class T, class U> constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) + std::forward<U>(u)); using is_transparent = /* unspecified */; }; }
Class template std::minus
namespace std { template<class T = void> struct minus { constexpr T operator()(const T& x, const T& y) const; }; template<> struct minus<void> { template<class T, class U> constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) - std::forward<U>(u)); using is_transparent = /* unspecified */; }; }
Class template std::multiplies
namespace std { template<class T = void> struct multiplies { constexpr T operator()(const T& x, const T& y) const; }; template<> struct multiplies<void> { template<class T, class U> constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) * std::forward<U>(u)); using is_transparent = /* unspecified */; }; }
Class template std::divides
namespace std { template<class T = void> struct divides { constexpr T operator()(const T& x, const T& y) const; }; template<> struct divides<void> { template<class T, class U> constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) / std::forward<U>(u)); using is_transparent = /* unspecified */; }; }
Class template std::modulus
namespace std { template<class T = void> struct modulus { constexpr T operator()(const T& x, const T& y) const; }; template<> struct modulus<void> { template<class T, class U> constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) % std::forward<U>(u)); using is_transparent = /* unspecified */; }; }
Class template std::negate
namespace std { template<class T = void> struct negate { constexpr T operator()(const T& x) const; }; template<> struct negate<void> { template<class T> constexpr auto operator()(T&& t) const -> decltype(-std::forward<T>(t)); using is_transparent = /* unspecified */; }; }
Class template std::equal_to
namespace std { template<class T = void> struct equal_to { constexpr bool operator()(const T& x, const T& y) const; }; template<> struct equal_to<void> { template<class T, class U> constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) == std::forward<U>(u)); using is_transparent = /* unspecified */; }; }
Class template std::not_equal_to
namespace std { template<class T = void> struct not_equal_to { constexpr bool operator()(const T& x, const T& y) const; }; template<> struct not_equal_to<void> { template<class T, class U> constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) != std::forward<U>(u)); using is_transparent = /* unspecified */; }; }
Class template std::greater
namespace std { template<class T = void> struct greater { constexpr bool operator()(const T& x, const T& y) const; }; template<> struct greater<void> { template<class T, class U> constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) > std::forward<U>(u)); using is_transparent = /* unspecified */; }; }
Class template std::less
namespace std { template<class T = void> struct less { constexpr bool operator()(const T& x, const T& y) const; }; template<> struct less<void> { template<class T, class U> constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) < std::forward<U>(u)); using is_transparent = /* unspecified */; }; }
Class template std::greater_equal
namespace std { template<class T = void> struct greater_equal { constexpr bool operator()(const T& x, const T& y) const; }; template<> struct greater_equal<void> { template<class T, class U> constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) >= std::forward<U>(u)); using is_transparent = /* unspecified */; }; }
Class template std::less_equal
namespace std { template<class T = void> struct less_equal { constexpr bool operator()(const T& x, const T& y) const; }; template<> struct less_equal<void> { template<class T, class U> constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) <= std::forward<U>(u)); using is_transparent = /* unspecified */; }; }
Class std::ranges::equal_to
namespace std::ranges { struct equal_to { template<class T, class U> constexpr bool operator()(T&& t, U&& u) const; using is_transparent = /* unspecified */; }; }
Class std::ranges::not_equal_to
namespace std::ranges { struct not_equal_to { template<class T, class U> constexpr bool operator()(T&& t, U&& u) const; using is_transparent = /* unspecified */; }; }
Class std::ranges::greater
namespace std::ranges { struct greater { template<class T, class U> constexpr bool operator()(T&& t, U&& u) const; using is_transparent = /* unspecified */; }; }
Class std::ranges::less
namespace std::ranges { struct less { template<class T, class U> constexpr bool operator()(T&& t, U&& u) const; using is_transparent = /* unspecified */; }; }
Class std::ranges::greater_equal
namespace std::ranges { struct greater_equal { template<class T, class U> constexpr bool operator()(T&& t, U&& u) const; using is_transparent = /* unspecified */; }; }
Class std::ranges::less_equal
namespace std::ranges { struct less_equal { template<class T, class U> constexpr bool operator()(T&& t, U&& u) const; using is_transparent = /* unspecified */; }; }
Class template std::logical_and
namespace std { template<class T = void> struct logical_and { constexpr bool operator()(const T& x, const T& y) const; }; template<> struct logical_and<void> { template<class T, class U> constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) && std::forward<U>(u)); using is_transparent = /* unspecified */; }; }
Class template std::logical_or
namespace std { template<class T = void> struct logical_or { constexpr bool operator()(const T& x, const T& y) const; }; template<> struct logical_or<void> { template<class T, class U> constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) || std::forward<U>(u)); using is_transparent = /* unspecified */; }; }
Class template std::logical_not
namespace std { template<class T = void> struct logical_not { constexpr bool operator()(const T& x) const; }; template<> struct logical_not<void> { template<class T> constexpr auto operator()(T&& t) const -> decltype(!std::forward<T>(t)); using is_transparent = /* unspecified */; }; }
Class template std::bit_and
namespace std { template<class T = void> struct bit_and { constexpr T operator()(const T& x, const T& y) const; }; template<> struct bit_and<void> { template<class T, class U> constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) & std::forward<U>(u)); using is_transparent = /* unspecified */; }; }
Class template std::bit_or
namespace std { template<class T = void> struct bit_or { constexpr T operator()(const T& x, const T& y) const; }; template<> struct bit_or<void> { template<class T, class U> constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) | std::forward<U>(u)); using is_transparent = /* unspecified */; }; }
Class template std::bit_xor
namespace std { template<class T = void> struct bit_xor { constexpr T operator()(const T& x, const T& y) const; }; template<> struct bit_xor<void> { template<class T, class U> constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) ^ std::forward<U>(u)); using is_transparent = /* unspecified */; }; }
Class template std::bit_not
namespace std { template<class T = void> struct bit_not { constexpr T operator()(const T& x) const; }; template<> struct bit_not<void> { template<class T> constexpr auto operator()(T&& t) const -> decltype(~std::forward<T>(t)); using is_transparent = /* unspecified */; }; }
Class template std::identity
namespace std { struct identity { template<class T> constexpr T&& operator()(T&& t) const noexcept; using is_transparent = /* unspecified */; }; }
Class template std::is_bind_expression
namespace std { template<class T> struct is_bind_expression; }
Class template std::is_placeholder
namespace std { template<class T> struct is_placeholder; }
Class std::bad_function_call
namespace std { class bad_function_call : public exception { public: // see [exception] for the specification of the special member functions const char* what() const noexcept override; }; }
Class template std::function
namespace std { template<class> class function; // not defined template<class R, class... ArgTypes> class function<R(ArgTypes...)> { public: using result_type = R; // construct/copy/destroy function() noexcept; function(nullptr_t) noexcept; function(const function&); function(function&&) noexcept; template<class F> function(F); function& operator=(const function&); function& operator=(function&&); function& operator=(nullptr_t) noexcept; template<class F> function& operator=(F&&); template<class F> function& operator=(reference_wrapper<F>) noexcept; ~function(); // function modifiers void swap(function&) noexcept; // function capacity explicit operator bool() const noexcept; // function invocation R operator()(ArgTypes...) const; // function target access const type_info& target_type() const noexcept; template<class T> T* target() noexcept; template<class T> const T* target() const noexcept; }; template<class R, class... ArgTypes> function(R(*)(ArgTypes...)) -> function<R(ArgTypes...)>; template<class F> function(F) -> function</* see description */>; // null pointer comparison functions template<class R, class... ArgTypes> bool operator==(const function<R(ArgTypes...)>&, nullptr_t) noexcept; // specialized algorithms template<class R, class... ArgTypes> void swap(function<R(ArgTypes...)>&, function<R(ArgTypes...)>&) noexcept; }
Class template std::move_only_function
namespace std { template<class... S> class move_only_function; // not defined template<class R, class... ArgTypes> class move_only_function<R(ArgTypes...) /*cv-ref*/ noexcept(/*noex*/)> { public: using result_type = R; // construct/move/destroy move_only_function() noexcept; move_only_function(nullptr_t) noexcept; move_only_function(move_only_function&&) noexcept; template<class F> move_only_function(F&&); template<class T, class... Args> explicit move_only_function(in_place_type_t<T>, Args&&...); template<class T, class U, class... Args> explicit move_only_function(in_place_type_t<T>, initializer_list<U>, Args&&...); move_only_function& operator=(move_only_function&&); move_only_function& operator=(nullptr_t) noexcept; template<class F> move_only_function& operator=(F&&); ~move_only_function(); // move_only_function invocation explicit operator bool() const noexcept; R operator()(ArgTypes...) /*cv-ref*/ noexcept(/*noex*/); // move_only_function utility void swap(move_only_function&) noexcept; friend void swap(move_only_function&, move_only_function&) noexcept; friend bool operator==(const move_only_function&, nullptr_t) noexcept; private: template<class VT> static constexpr bool /*is-callable-from*/ = /* see description */; // exposition-only }; }
Class template std::default_searcher
namespace std { template<class ForwardIter1, class BinaryPredicate = equal_to<>> class default_searcher { public: constexpr default_searcher(ForwardIter1 pat_first, ForwardIter1 pat_last, BinaryPredicate pred = BinaryPredicate()); template<class ForwardIter2> constexpr pair<ForwardIter2, ForwardIter2> operator()(ForwardIter2 first, ForwardIter2 last) const; private: ForwardIter1 pat_first_; // exposition only ForwardIter1 pat_last_; // exposition only BinaryPredicate pred_; // exposition only }; }
Class template std::boyer_moore_searcher
namespace std { template<class RandomAccessIter1, class Hash = hash<typename iterator_traits<RandomAccessIter1>::value_type>, class BinaryPredicate = equal_to<>> class boyer_moore_searcher { public: boyer_moore_searcher(RandomAccessIter1 pat_first, RandomAccessIter1 pat_last, Hash hf = Hash(), BinaryPredicate pred = BinaryPredicate()); template<class RandomAccessIter2> pair<RandomAccessIter2, RandomAccessIter2> operator()(RandomAccessIter2 first, RandomAccessIter2 last) const; private: RandomAccessIter1 pat_first_; // exposition only RandomAccessIter1 pat_last_; // exposition only Hash hash_; // exposition only BinaryPredicate pred_; // exposition only }; }
Class template std::boyer_moore_horspool_searcher
namespace std { template<class RandomAccessIter1, class Hash = hash<typename iterator_traits<RandomAccessIter1>::value_type>, class BinaryPredicate = equal_to<>> class boyer_moore_horspool_searcher { public: boyer_moore_horspool_searcher(RandomAccessIter1 pat_first, RandomAccessIter1 pat_last, Hash hf = Hash(), BinaryPredicate pred = BinaryPredicate()); template<class RandomAccessIter2> pair<RandomAccessIter2, RandomAccessIter2> operator()(RandomAccessIter2 first, RandomAccessIter2 last) const; private: RandomAccessIter1 pat_first_; // exposition only RandomAccessIter1 pat_last_; // exposition only Hash hash_; // exposition only BinaryPredicate pred_; // exposition only }; }
See also
<string> | Specializes std::hash for std::string, std::u16string, std::u32string, std::wstring |
<string_view> | Specializes std::hash for std::string_view, std::u16string_view, std::u32string_view, std::wstring_view |
<system_error> | Specializes std::hash for std::error_code |
<bitset> | Specializes std::hash for std::bitset |
<memory> | Specializes std::hash for std::unique_ptr, std::shared_ptr |
<typeindex> | Specializes std::hash for std::type_index |
<vector> | Specializes std::hash for std::vector<bool> |
<thread> | Specializes std::hash for std::thread::id |
<optional> | Specializes std::hash for std::optional |
<variant> | Specializes std::hash for std::variant |
<coroutine> | Specializes std::hash for std::coroutine_handle |
<stacktrace> | Specializes std::hash for std::stacktrace_entry and std::basic_stacktrace |