std::log10(std::complex)
From cppreference.com
Defined in header <complex>
|
||
template< class T > std::complex<T> log10( const std::complex<T>& z ); |
||
Computes complex common (base 10) logarithm of a complex value z with a branch cut along the negative real axis.
The behavior of this function is equivalent to std::log(z) / std::log(T(10))
.
Parameters
z | - | complex value |
Return value
Complex common logarithm of z.
Example
Run this code
#include <cmath> #include <complex> #include <iostream> int main() { std::complex<double> z(0.0, 1.0); // r = 0, θ = pi / 2 std::cout << "2 * log10" << z << " = " << 2.0 * std::log10(z) << '\n'; std::complex<double> z2(sqrt(2.0) / 2, sqrt(2.0) / 2); // r = 1, θ = pi / 4 std::cout << "4 * log10" << z2 << " = " << 4.0 * std::log10(z2) << '\n'; std::complex<double> z3(-100.0, 0.0); // r = 100, θ = pi std::cout << "log10" << z3 << " = " << std::log10(z3) << '\n'; std::complex<double> z4(-100.0, -0.0); // the other side of the cut std::cout << "log10" << z4 << " = " << std::log10(z4) << " " "(the other side of the cut)\n" "(note: pi / log(10) = " << std::acos(-1.0) / std::log(10.0) << ")\n"; }
Possible output:
2 * log10(0,1) = (0,1.36438) 4 * log10(0.707107,0.707107) = (0,1.36438) log10(-100,0) = (2,1.36438) log10(-100,-0) = (2,-1.36438) (the other side of the cut) (note: pi / log(10) = 1.36438)
See also
complex natural logarithm with the branch cuts along the negative real axis (function template) | |
(C++11)(C++11) |
computes common (base 10) logarithm (log10(x)) (function) |
applies the function std::log10 to each element of valarray (function template) |