std::riemann_zeta, std::riemann_zetaf, std::riemann_zetal
double riemann_zeta( double arg ); double riemann_zeta( float arg ); |
(1) | |
double riemann_zeta( IntegralType arg ); |
(2) | |
As all special functions, riemann_zeta
is only guaranteed to be available in <cmath>
if __STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Parameters
arg | - | value of a floating-point or integral type |
Return value
If no errors occur, value of the Riemann zeta function of arg, ζ(arg), defined for the entire real axis:
- For arg > 1, Σ∞
n=1n-arg
. - For 0 ≤ arg ≤ 1,
Σ∞1 1 - 21-arg
n=1(-1)n-1
n-arg
. - For arg < 0, 2arg
πarg-1
sin(
)Γ(1 − arg)ζ(1 − arg).πarg 2
Error handling
Errors may be reported as specified in math_errhandling.
- If the argument is NaN, NaN is returned and domain error is not reported.
Notes
Implementations that do not support TR 29124 but support TR 19768, provide this function in the header tr1/cmath
and namespace std::tr1
.
An implementation of this function is also available in boost.math.
Example
(works as shown with gcc 6.0)
#define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1 #include <cmath> #include <iostream> int main() { // spot checks for well-known values std::cout << "ζ(-1) = " << std::riemann_zeta(-1) << '\n' << "ζ(0) = " << std::riemann_zeta(0) << '\n' << "ζ(1) = " << std::riemann_zeta(1) << '\n' << "ζ(0.5) = " << std::riemann_zeta(0.5) << '\n' << "ζ(2) = " << std::riemann_zeta(2) << ' ' << "(π²/6 = " << std::pow(std::acos(-1), 2) / 6 << ")\n"; }
Output:
ζ(-1) = -0.0833333 ζ(0) = -0.5 ζ(1) = inf ζ(0.5) = -1.46035 ζ(2) = 1.64493 (π²/6 = 1.64493)
External links
Weisstein, Eric W. "Riemann Zeta Function." From MathWorld--A Wolfram Web Resource.