std::hermite, std::hermitef, std::hermitel

From cppreference.com
 
 
Technical specifications
Filesystem library (filesystem TS)
Library fundamentals (library fundamentals TS)
Library fundamentals 2 (library fundamentals TS v2)
Library fundamentals 3 (library fundamentals TS v3)
Extensions for parallelism (parallelism TS)
Extensions for parallelism 2 (parallelism TS v2)
Extensions for concurrency (concurrency TS)
Extensions for concurrency 2 (concurrency TS v2)
Concepts (concepts TS)
Ranges (ranges TS)
Reflection (reflection TS)
Mathematical special functions (special functions TR)
 
 
double      hermite( unsigned int n, double x );

double      hermite( unsigned int n, float x );
double      hermite( unsigned int n, long double x );
float       hermitef( unsigned int n, float x );

long double hermitel( unsigned int n, long double x );
(1)
double      hermite( unsigned int n, IntegralType x );
(2)
1) Computes the (physicist's) Hermite polynomials of the degree n and argument x.
2) A set of overloads or a function template accepting an argument of any integral type. Equivalent to (1) after casting the argument to double.

As all special functions, hermite is only guaranteed to be available in <cmath> if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.

Parameters

n - the degree of the polynomial
x - the argument, a value of a floating-point or integral type

Return value

If no errors occur, value of the order-nHermite polynomial of x, that is (-1)n
ex2
dn
dxn
e-x2
, is returned.

Error handling

Errors may be reported as specified in math_errhandling.

  • If the argument is NaN, NaN is returned and domain error is not reported.
  • If n is greater or equal than 128, the behavior is implementation-defined.

Notes

Implementations that do not support TR 29124 but support TR 19768, provide this function in the header tr1/cmath and namespace std::tr1.

An implementation of this function is also available in boost.math.

The Hermite polynomials are the polynomial solutions of the equation u,,
- 2xu,
= -2nu
.

The first few are:

  • hermite(0, x) = 1.
  • hermite(1, x) = 2x.
  • hermite(2, x) = 4x2
    - 2
    .
  • hermite(3, x) = 8x3
    - 12x
    .
  • hermite(4, x) = 16x4
    - 48x2
    + 12
    .

Example

(works as shown with gcc 6.0)

#define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1
#include <cmath>
#include <iostream>
 
double H3(double x)
{
    return 8 * std::pow(x, 3) - 12 * x;
}
 
double H4(double x)
{
    return 16 * std::pow(x, 4) - 48 * x * x + 12;
}
 
int main()
{
    // spot-checks
    std::cout << std::hermite(3, 10) << '=' << H3(10) << '\n'
              << std::hermite(4, 10) << '=' << H4(10) << '\n';
}

Output:

7880=7880
155212=155212

See also

Laguerre polynomials
(function)
Legendre polynomials
(function)

External links

Weisstein, Eric W. ""Hermite Polynomial." From MathWorld--A Wolfram Web Resource.