std::assoc_laguerre, std::assoc_laguerref, std::assoc_laguerrel

From cppreference.com
 
 
Technical specifications
Filesystem library (filesystem TS)
Library fundamentals (library fundamentals TS)
Library fundamentals 2 (library fundamentals TS v2)
Library fundamentals 3 (library fundamentals TS v3)
Extensions for parallelism (parallelism TS)
Extensions for parallelism 2 (parallelism TS v2)
Extensions for concurrency (concurrency TS)
Extensions for concurrency 2 (concurrency TS v2)
Concepts (concepts TS)
Ranges (ranges TS)
Reflection (reflection TS)
Mathematical special functions (special functions TR)
 
 
double      assoc_laguerre ( unsigned int n, unsigned int m, double x );

double      assoc_laguerre ( unsigned int n, unsigned int m, float x );
double      assoc_laguerre ( unsigned int n, unsigned int m, long double x );
float       assoc_laguerref( unsigned int n, unsigned int m, float x );

long double assoc_laguerrel( unsigned int n, unsigned int m, long double x );
(1)
double      assoc_laguerre ( unsigned int n, unsigned int m, IntegralType x );
(2)
1) Computes the associated Laguerre polynomials of the degree n, order m, and argument x.
4) A set of overloads or a function template accepting an argument of any integral type. Equivalent to (1) after casting the argument to double.

As all special functions, assoc_laguerre is only guaranteed to be available in <cmath> if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.

Parameters

n - the degree of the polynomial, a value of unsigned integer type
m - the order of the polynomial, a value of unsigned integer type
x - the argument, a value of a floating-point or integral type

Return value

If no errors occur, value of the associated Laguerre polynomial of x, that is (-1)m
dm
dxm
L
n + m
(x)
, is returned (where L
n + m
(x)
is the unassociated Laguerre polynomial, std::laguerre(n + m, x)).

Error handling

Errors may be reported as specified in math_errhandling.

  • If the argument is NaN, NaN is returned and domain error is not reported.
  • If x is negative, a domain error may occur.
  • If n or m is greater or equal to 128, the behavior is implementation-defined.

Notes

Implementations that do not support TR 29124 but support TR 19768, provide this function in the header tr1/cmath and namespace std::tr1.

An implementation of this function is also available in boost.math.

The associated Laguerre polynomials are the polynomial solutions of the equation xy,,
+ (m + 1 - x)y,
+ ny = 0
.

The first few are:

  • assoc_laguerre(0, m, x) = 1.
  • assoc_laguerre(1, m, x) = -x + m + 1.
  • assoc_laguerre(2, m, x) =
    1
    2
    [x2
    - 2(m + 2)x + (m + 1)(m + 2)]
    .
  • assoc_laguerre(3, m, x) =
    1
    6
    [-x3
    - 3(m + 3)x2
    - 3(m + 2)(m + 3)x + (m + 1)(m + 2)(m + 3)]
    .

Example

#define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1
#include <cmath>
#include <iostream>
 
double L1(unsigned m, double x)
{
    return -x + m + 1;
}
 
double L2(unsigned m, double x)
{
    return 0.5 * (x * x - 2 * (m + 2) * x + (m + 1) * (m + 2));
}
 
int main()
{
    // spot-checks
    std::cout << std::assoc_laguerre(1, 10, 0.5) << '=' << L1(10, 0.5) << '\n'
              << std::assoc_laguerre(2, 10, 0.5) << '=' << L2(10, 0.5) << '\n';
}

Output:

10.5=10.5
60.125=60.125

See also

Laguerre polynomials
(function)

External links

Weisstein, Eric W. "Associated Laguerre Polynomial." From MathWorld — A Wolfram Web Resource.