// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt /* This example demonstrates the usage of the numerical quadrature function integrate_function_adapt_simp(). This function takes as input a single variable function, the endpoints of a domain over which the function will be integrated, and a tolerance parameter. It outputs an approximation of the integral of this function over the specified domain. The algorithm is based on the adaptive Simpson method outlined in: Numerical Integration method based on the adaptive Simpson method in Gander, W. and W. Gautschi, "Adaptive Quadrature – Revisited," BIT, Vol. 40, 2000, pp. 84-101 */ #include <iostream> #include <dlib/matrix.h> #include <dlib/numeric_constants.h> #include <dlib/numerical_integration.h> using namespace std; using namespace dlib; // Here we the set of functions that we wish to integrate and comment in the domain of // integration. // x in [0,1] double gg1(double x) { return pow(e,x); } // x in [0,1] double gg2(double x) { return x*x; } // x in [0, pi] double gg3(double x) { return 1/(x*x + cos(x)*cos(x)); } // x in [-pi, pi] double gg4(double x) { return sin(x); } // x in [0,2] double gg5(double x) { return 1/(1 + x*x); } int main() { // We first define a tolerance parameter. Roughly speaking, a lower tolerance will // result in a more accurate approximation of the true integral. However, there are // instances where too small of a tolerance may yield a less accurate approximation // than a larger tolerance. We recommend taking the tolerance to be in the // [1e-10, 1e-8] region. double tol = 1e-10; // Here we compute the integrals of the five functions defined above using the same // tolerance level for each. double m1 = integrate_function_adapt_simp(&gg1, 0.0, 1.0, tol); double m2 = integrate_function_adapt_simp(&gg2, 0.0, 1.0, tol); double m3 = integrate_function_adapt_simp(&gg3, 0.0, pi, tol); double m4 = integrate_function_adapt_simp(&gg4, -pi, pi, tol); double m5 = integrate_function_adapt_simp(&gg5, 0.0, 2.0, tol); // We finally print out the values of each of the approximated integrals to ten // significant digits. cout << "\nThe integral of exp(x) for x in [0,1] is " << std::setprecision(10) << m1 << endl; cout << "The integral of x^2 for in [0,1] is " << std::setprecision(10) << m2 << endl; cout << "The integral of 1/(x^2 + cos(x)^2) for in [0,pi] is " << std::setprecision(10) << m3 << endl; cout << "The integral of sin(x) for in [-pi,pi] is " << std::setprecision(10) << m4 << endl; cout << "The integral of 1/(1+x^2) for in [0,2] is " << std::setprecision(10) << m5 << endl; cout << endl; return 0; }