// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt /* This is an example illustrating the use of the deep learning tools from the dlib C++ Library. I'm assuming you have already read the dnn_introduction_ex.cpp, the dnn_introduction2_ex.cpp and the dnn_introduction3_ex.cpp examples. In this example program we are going to show how one can train a YOLO detector. In particular, we will train the YOLOv3 model like the one introduced in this paper: "YOLOv3: An Incremental Improvement" by Joseph Redmon and Ali Farhadi. This example program will work with any imglab dataset, such as: - faces: http://dlib.net/files/data/dlib_face_detection_dataset-2016-09-30.tar.gz - vehicles: http://dlib.net/files/data/dlib_rear_end_vehicles_v1.tar Just uncompress the dataset and give the directory containing the training.xml and testing.xml files as an argument to this program. */ #include <dlib/cmd_line_parser.h> #include <dlib/data_io.h> #include <dlib/dnn.h> #include <dlib/gui_widgets.h> #include <dlib/image_io.h> #include <tools/imglab/src/metadata_editor.h> using namespace std; using namespace dlib; // In the darknet namespace we define: // - the network architecture: DarkNet53 backbone and detection head for YOLO. // - a helper function to setup the detector: change the number of classes, etc. namespace darknet { // backbone tags template <typename SUBNET> using btag8 = add_tag_layer<8008, SUBNET>; template <typename SUBNET> using btag16 = add_tag_layer<8016, SUBNET>; template <typename SUBNET> using bskip8 = add_skip_layer<btag8, SUBNET>; template <typename SUBNET> using bskip16 = add_skip_layer<btag16, SUBNET>; // neck tags template <typename SUBNET> using ntag8 = add_tag_layer<6008, SUBNET>; template <typename SUBNET> using ntag16 = add_tag_layer<6016, SUBNET>; template <typename SUBNET> using ntag32 = add_tag_layer<6032, SUBNET>; template <typename SUBNET> using nskip8 = add_skip_layer<ntag8, SUBNET>; template <typename SUBNET> using nskip16 = add_skip_layer<ntag16, SUBNET>; template <typename SUBNET> using nskip32 = add_skip_layer<ntag32, SUBNET>; // head tags template <typename SUBNET> using htag8 = add_tag_layer<7008, SUBNET>; template <typename SUBNET> using htag16 = add_tag_layer<7016, SUBNET>; template <typename SUBNET> using htag32 = add_tag_layer<7032, SUBNET>; template <typename SUBNET> using hskip8 = add_skip_layer<htag8, SUBNET>; template <typename SUBNET> using hskip16 = add_skip_layer<htag16, SUBNET>; // yolo tags template <typename SUBNET> using ytag8 = add_tag_layer<4008, SUBNET>; template <typename SUBNET> using ytag16 = add_tag_layer<4016, SUBNET>; template <typename SUBNET> using ytag32 = add_tag_layer<4032, SUBNET>; template <template <typename> class ACT, template <typename> class BN> struct def { template <long nf, long ks, int s, typename SUBNET> using conblock = ACT<BN<add_layer<con_<nf, ks, ks, s, s, ks / 2, ks / 2>, SUBNET>>>; template <long nf, typename SUBNET> using residual = add_prev1<conblock<nf, 3, 1, conblock<nf / 2, 1, 1, tag1<SUBNET>>>>; template <long nf, long factor, typename SUBNET> using conblock5 = conblock<nf, 1, 1, conblock<nf * factor, 3, 1, conblock<nf, 1, 1, conblock<nf * factor, 3, 1, conblock<nf, 1, 1, SUBNET>>>>>; template <typename SUBNET> using res_64 = residual<64, SUBNET>; template <typename SUBNET> using res_128 = residual<128, SUBNET>; template <typename SUBNET> using res_256 = residual<256, SUBNET>; template <typename SUBNET> using res_512 = residual<512, SUBNET>; template <typename SUBNET> using res_1024 = residual<1024, SUBNET>; template <typename INPUT> using backbone53 = repeat<4, res_1024, conblock<1024, 3, 2, btag16<repeat<8, res_512, conblock<512, 3, 2, btag8<repeat<8, res_256, conblock<256, 3, 2, repeat<2, res_128, conblock<128, 3, 2, res_64< conblock<64, 3, 2, conblock<32, 3, 1, INPUT>>>>>>>>>>>>>; // This is the layer that will be passed to the loss layer to get the detections from the network. // The main thing to pay attention to when defining the YOLO output layer is that it should be // a tag layer, followed by a sigmoid layer and a 1x1 convolution. The tag layer should be unique // in the whole network definition, as the loss layer will use it to get the outputs. The number of // filters in the convolutional layer should be (1 + 4 + num_classes) * num_anchors at that output. // The 1 corresponds to the objectness in the loss layer and the 4 to the bounding box coordinates. template <long num_classes, long nf, template <typename> class YTAG, template <typename> class NTAG, typename SUBNET> using yolo = YTAG<sig<con<3 * (num_classes + 5), 1, 1, 1, 1, conblock<nf, 3, 1, NTAG<conblock5<nf / 2, 2, SUBNET>>>>>>; template <long num_classes> using yolov3 = yolo<num_classes, 256, ytag8, ntag8, concat2<htag8, btag8, htag8<upsample<2, conblock<128, 1, 1, nskip16< yolo<num_classes, 512, ytag16, ntag16, concat2<htag16, btag16, htag16<upsample<2, conblock<256, 1, 1, nskip32< yolo<num_classes, 1024, ytag32, ntag32, backbone53<input_rgb_image>>>>>>>>>>>>>>; }; using yolov3_train_type = loss_yolo<ytag8, ytag16, ytag32, def<leaky_relu, bn_con>::yolov3<80>>; using yolov3_infer_type = loss_yolo<ytag8, ytag16, ytag32, def<leaky_relu, affine>::yolov3<80>>; void setup_detector(yolov3_train_type& net, const yolo_options& options) { // remove bias from bn inputs disable_duplicative_biases(net); // setup leaky relus visit_computational_layers(net, [](leaky_relu_& l) { l = leaky_relu_(0.1); }); // enlarge the batch normalization stats window set_all_bn_running_stats_window_sizes(net, 1000); // set the number of filters for detection layers (they are located after the tag and sig layers) const long nfo1 = options.anchors.at(tag_id<ytag8>::id).size() * (options.labels.size() + 5); const long nfo2 = options.anchors.at(tag_id<ytag16>::id).size() * (options.labels.size() + 5); const long nfo3 = options.anchors.at(tag_id<ytag32>::id).size() * (options.labels.size() + 5); layer<ytag8, 2>(net).layer_details().set_num_filters(nfo1); layer<ytag16, 2>(net).layer_details().set_num_filters(nfo2); layer<ytag32, 2>(net).layer_details().set_num_filters(nfo3); } } // In this example, YOLO expects square images, and we choose to transform them by letterboxing them. rectangle_transform preprocess_image(const matrix<rgb_pixel>& image, matrix<rgb_pixel>& output, const long image_size) { return rectangle_transform(inv(letterbox_image(image, output, image_size))); } // YOLO outputs the bounding boxes in the coordinate system of the input (letterboxed) image, so we need to convert them // back to the original image. void postprocess_detections(const rectangle_transform& tform, std::vector<yolo_rect>& detections) { for (auto& d : detections) d.rect = tform(d.rect); } int main(const int argc, const char** argv) try { command_line_parser parser; parser.add_option("size", "image size for training (default: 416)", 1); parser.add_option("learning-rate", "initial learning rate (default: 0.001)", 1); parser.add_option("batch-size", "mini batch size (default: 8)", 1); parser.add_option("burnin", "learning rate burnin steps (default: 1000)", 1); parser.add_option("patience", "number of steps without progress (default: 10000)", 1); parser.add_option("workers", "number of worker threads to load data (default: 4)", 1); parser.add_option("gpus", "number of GPUs to run the training on (default: 1)", 1); parser.add_option("test", "test the detector with a threshold (default: 0.01)", 1); parser.add_option("visualize", "visualize data augmentation instead of training"); parser.add_option("map", "compute the mean average precision"); parser.add_option("anchors", "Do nothing but compute <arg1> anchor boxes using K-Means and print their shapes.", 1); parser.set_group_name("Help Options"); parser.add_option("h", "alias of --help"); parser.add_option("help", "display this message and exit"); parser.parse(argc, argv); if (parser.number_of_arguments() == 0 || parser.option("h") || parser.option("help")) { parser.print_options(); cout << "Give the path to a folder containing the training.xml file." << endl; return 0; } const double learning_rate = get_option(parser, "learning-rate", 0.001); const size_t patience = get_option(parser, "patience", 10000); const size_t batch_size = get_option(parser, "batch-size", 8); const size_t burnin = get_option(parser, "burnin", 1000); const size_t image_size = get_option(parser, "size", 416); const size_t num_workers = get_option(parser, "workers", 4); const size_t num_gpus = get_option(parser, "gpus", 1); const string data_directory = parser[0]; const string sync_file_name = "yolov3_sync"; image_dataset_metadata::dataset dataset; image_dataset_metadata::load_image_dataset_metadata(dataset, data_directory + "/training.xml"); cout << "# images: " << dataset.images.size() << endl; std::map<string, size_t> labels; size_t num_objects = 0; for (const auto& im : dataset.images) { for (const auto& b : im.boxes) { labels[b.label]++; ++num_objects; } } cout << "# labels: " << labels.size() << endl; yolo_options options; color_mapper string_to_color; for (const auto& label : labels) { cout << " - " << label.first << ": " << label.second; cout << " (" << (100.0*label.second)/num_objects << "%)\n"; options.labels.push_back(label.first); string_to_color(label.first); } // If the default anchor boxes don't fit your data well you should recompute them. // Here's a simple way to do it using K-Means clustering. Note that the approach // shown below is suboptimal, since it doesn't group the bounding boxes by size. // Grouping the bounding boxes by size and computing the K-Means on each group // would make more sense, since each stride of the network is meant to output // boxes at a particular size, but that is very specific to the network architecture // and the dataset itself. if (parser.option("anchors")) { const auto num_clusers = std::stoul(parser.option("anchors").argument()); std::vector<dpoint> samples; // First we need to rescale the bounding boxes to match the image size at training time. for (const auto& image_info : dataset.images) { const auto scale = image_size / std::max<double>(image_info.width, image_info.height); for (const auto& box : image_info.boxes) { dpoint sample(box.rect.width(), box.rect.height()); samples.push_back(sample*scale); } } // Now we can compute K-Means clustering randomize_samples(samples); cout << "Computing anchors for " << samples.size() << " samples" << endl; std::vector<dpoint> anchors; pick_initial_centers(num_clusers, anchors, samples); find_clusters_using_kmeans(samples, anchors); std::sort(anchors.begin(), anchors.end(), [](const dpoint& a, const dpoint& b){ return prod(a) < prod(b); }); for (const dpoint& c : anchors) cout << round(c(0)) << 'x' << round(c(1)) << endl; // And check the average IoU of the newly computed anchor boxes and the training samples. double average_iou = 0; for (const dpoint& s : samples) { drectangle sample = centered_drect(dpoint(0, 0), s.x(), s.y()); double best_iou = 0; for (const dpoint& a : anchors) { drectangle anchor = centered_drect(dpoint(0, 0), a.x(), a.y()); best_iou = std::max(best_iou, box_intersection_over_union(sample, anchor)); } average_iou += best_iou; } cout << "Average IoU: " << average_iou / samples.size() << endl; return EXIT_SUCCESS; } // When computing the objectness loss in YOLO, predictions that do not have an IoU // with any ground truth box of at least options.iou_ignore_threshold, will be // treated as not capable of detecting an object, an therefore incur loss. // Similarly, predictions above this threshold are considered correct predictions // by the loss. Typical settings for this threshold are in the range 0.5 to 0.7. options.iou_ignore_threshold = 0.7; // By setting this to a value < 1, we are telling the model to update all the predictions // as long as the anchor box has an IoU > 0.2 with a ground truth. options.iou_anchor_threshold = 0.2; // These are the anchors computed on COCO dataset, presented in the YOLOv3 paper. options.add_anchors<darknet::ytag8>({{10, 13}, {16, 30}, {33, 23}}); options.add_anchors<darknet::ytag16>({{30, 61}, {62, 45}, {59, 119}}); options.add_anchors<darknet::ytag32>({{116, 90}, {156, 198}, {373, 326}}); darknet::yolov3_train_type net(options); darknet::setup_detector(net, options); // The training process can be unstable at the beginning. For this reason, we exponentially // increase the learning rate during the first burnin steps. const matrix<double> learning_rate_schedule = learning_rate * pow(linspace(1e-12, 1, burnin), 4); // In case we have several GPUs, we can tell the dnn_trainer to make use of them. std::vector<int> gpus(num_gpus); iota(gpus.begin(), gpus.end(), 0); // We initialize the trainer here, as it will be used in several contexts, depending on the // arguments passed the the program. dnn_trainer<darknet::yolov3_train_type> trainer(net, sgd(0.0005, 0.9), gpus); trainer.be_verbose(); trainer.set_mini_batch_size(batch_size); trainer.set_learning_rate_schedule(learning_rate_schedule); trainer.set_synchronization_file(sync_file_name, chrono::minutes(15)); cout << trainer; // If the training has started and a synchronization file has already been saved to disk, // we can re-run this program with the --test option and a confidence threshold to see // how the training is going. if (parser.option("test")) { if (!file_exists(sync_file_name)) { cout << "Could not find file " << sync_file_name << endl; return EXIT_FAILURE; } const double threshold = get_option(parser, "test", 0.01); image_window win; matrix<rgb_pixel> image, resized; for (const auto& im : dataset.images) { win.clear_overlay(); load_image(image, data_directory + "/" + im.filename); win.set_title(im.filename); win.set_image(image); const auto tform = preprocess_image(image, resized, image_size); auto detections = net.process(resized, threshold); postprocess_detections(tform, detections); cout << "# detections: " << detections.size() << endl; for (const auto& det : detections) { win.add_overlay(det.rect, string_to_color(det.label), det.label); cout << det.label << ": " << det.rect << " " << det.detection_confidence << endl; } cin.get(); } return EXIT_SUCCESS; } // If the training has started and a synchronization file has already been saved to disk, // we can re-run this program with the --map option to compute the mean average precision // on the test set. if (parser.option("map")) { image_dataset_metadata::dataset dataset; image_dataset_metadata::load_image_dataset_metadata(dataset, data_directory + "/testing.xml"); if (!file_exists(sync_file_name)) { cout << "Could not find file " << sync_file_name << endl; return EXIT_FAILURE; } matrix<rgb_pixel> image, resized; std::map<std::string, std::vector<std::pair<double, bool>>> hits; std::map<std::string, unsigned long> missing; for (const auto& label : options.labels) { hits[label] = std::vector<std::pair<double, bool>>(); missing[label] = 0; } cout << "computing mean average precision for " << dataset.images.size() << " images..." << endl; for (size_t i = 0; i < dataset.images.size(); ++i) { const auto& im = dataset.images[i]; load_image(image, data_directory + "/" + im.filename); const auto tform = preprocess_image(image, resized, image_size); auto dets = net.process(resized, 0.005); postprocess_detections(tform, dets); std::vector<bool> used(dets.size(), false); // true positives: truths matched by detections for (size_t t = 0; t < im.boxes.size(); ++t) { bool found_match = false; for (size_t d = 0; d < dets.size(); ++d) { if (used[d]) continue; if (im.boxes[t].label == dets[d].label && box_intersection_over_union(drectangle(im.boxes[t].rect), dets[d].rect) > 0.5) { used[d] = true; found_match = true; hits.at(dets[d].label).emplace_back(dets[d].detection_confidence, true); break; } } // false negatives: truths not matched if (!found_match) missing.at(im.boxes[t].label)++; } // false positives: detections not matched for (size_t d = 0; d < dets.size(); ++d) { if (!used[d]) hits.at(dets[d].label).emplace_back(dets[d].detection_confidence, false); } cout << "progress: " << i << '/' << dataset.images.size() << "\t\t\t\r" << flush; } double map = 0; for (auto& item : hits) { std::sort(item.second.rbegin(), item.second.rend()); const double ap = average_precision(item.second, missing[item.first]); cout << rpad(item.first + ": ", 16, " ") << ap * 100 << '%' << endl; map += ap; } cout << rpad(string("mAP: "), 16, " ") << map / hits.size() * 100 << '%' << endl; return EXIT_SUCCESS; } // Create some data loaders which will load the data, and perform some data augmentation. dlib::pipe<std::pair<matrix<rgb_pixel>, std::vector<yolo_rect>>> train_data(1000); const auto loader = [&dataset, &data_directory, &train_data, &image_size](time_t seed) { dlib::rand rnd(time(nullptr) + seed); matrix<rgb_pixel> image, rotated; std::pair<matrix<rgb_pixel>, std::vector<yolo_rect>> temp; random_cropper cropper; cropper.set_seed(time(nullptr) + seed); cropper.set_chip_dims(image_size, image_size); cropper.set_max_object_size(0.9); cropper.set_min_object_size(10, 10); cropper.set_max_rotation_degrees(10); cropper.set_translate_amount(0.5); cropper.set_randomly_flip(true); cropper.set_background_crops_fraction(0); cropper.set_min_object_coverage(0.8); while (train_data.is_enabled()) { const auto idx = rnd.get_random_32bit_number() % dataset.images.size(); load_image(image, data_directory + "/" + dataset.images[idx].filename); for (const auto& box : dataset.images[idx].boxes) temp.second.emplace_back(box.rect, 1, box.label); // We alternate between augmenting the full image and random cropping if (rnd.get_random_double() > 0.5) { rectangle_transform tform = rotate_image( image, rotated, rnd.get_double_in_range(-5 * pi / 180, 5 * pi / 180), interpolate_bilinear()); for (auto& box : temp.second) box.rect = tform(box.rect); tform = letterbox_image(rotated, temp.first, image_size); for (auto& box : temp.second) box.rect = tform(box.rect); if (rnd.get_random_double() > 0.5) { tform = flip_image_left_right(temp.first); for (auto& box : temp.second) box.rect = tform(box.rect); } } else { std::vector<yolo_rect> boxes = temp.second; cropper(image, boxes, temp.first, temp.second); } disturb_colors(temp.first, rnd); train_data.enqueue(temp); } }; std::vector<thread> data_loaders; for (size_t i = 0; i < num_workers; ++i) data_loaders.emplace_back([loader, i]() { loader(i + 1); }); // It is always a good idea to visualize the training samples. By passing the --visualize // flag, we can see the training samples that will be fed to the dnn_trainer. if (parser.option("visualize")) { image_window win; while (true) { std::pair<matrix<rgb_pixel>, std::vector<yolo_rect>> temp; train_data.dequeue(temp); win.clear_overlay(); win.set_image(temp.first); for (const auto& r : temp.second) { auto color = string_to_color(r.label); // make semi-transparent and cross-out the ignored boxes if (r.ignore) { color.alpha = 128; win.add_overlay(r.rect.tl_corner(), r.rect.br_corner(), color); win.add_overlay(r.rect.tr_corner(), r.rect.bl_corner(), color); } win.add_overlay(r.rect, color, r.label); } cout << "Press enter to visualize the next training sample."; cin.get(); } } std::vector<matrix<rgb_pixel>> images; std::vector<std::vector<yolo_rect>> bboxes; // The main training loop, that we will reuse for the warmup and the rest of the training. const auto train = [&images, &bboxes, &train_data, &trainer]() { images.clear(); bboxes.clear(); pair<matrix<rgb_pixel>, std::vector<yolo_rect>> temp; while (images.size() < trainer.get_mini_batch_size()) { train_data.dequeue(temp); images.push_back(move(temp.first)); bboxes.push_back(move(temp.second)); } trainer.train_one_step(images, bboxes); }; cout << "training started with " << burnin << " burn-in steps" << endl; while (trainer.get_train_one_step_calls() < burnin) train(); cout << "burn-in finished" << endl; trainer.get_net(); trainer.set_learning_rate(learning_rate); trainer.set_min_learning_rate(learning_rate * 1e-3); trainer.set_learning_rate_shrink_factor(0.1); trainer.set_iterations_without_progress_threshold(patience); cout << trainer << endl; while (trainer.get_learning_rate() >= trainer.get_min_learning_rate()) train(); cout << "training done" << endl; trainer.get_net(); train_data.disable(); for (auto& worker : data_loaders) worker.join(); // Before saving the network, we can assign it to the "infer" version, so that it won't // perform batch normalization with batch sizes larger than one, as usual. Moreover, // we can also fuse the batch normalization (affine) layers into the convolutional // layers, so that the network can run a bit faster. Notice that, after fusing the // layers, the network can no longer be used for training, so you should save the // yolov3_train_type network if you plan to further train or finetune the network. darknet::yolov3_infer_type inet(net); fuse_layers(inet); serialize("yolov3.dnn") << inet; return EXIT_SUCCESS; } catch (const std::exception& e) { cout << e.what() << endl; return EXIT_FAILURE; }